Machine learning versus econometrics: prediction of box office
Author
Abstract
Suggested Citation
DOI: 10.1080/13504851.2018.1441499
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Alexander Cuntz & Alessio Muscarnera & Prince C. Oguguo & Matthias Sahli, 2023. "IP assets and film finance - a primer on standard practices in the U.S," WIPO Economic Research Working Papers 74, World Intellectual Property Organization - Economics and Statistics Division.
- Jordi McKenzie, 2023. "The economics of movies (revisited): A survey of recent literature," Journal of Economic Surveys, Wiley Blackwell, vol. 37(2), pages 480-525, April.
- Antonio Rodríguez Andrés & Voxi Heinrich S. Amavilah & Abraham Otero, 2021.
"Evaluation of technology clubs by clustering: a cautionary note,"
Applied Economics, Taylor & Francis Journals, vol. 53(52), pages 5989-6001, November.
- Andres, Antonio Rodriguez & Otero, Abraham & Amavilah, Voxi Heinrich, 2021. "Evaluation of technology clubs by clustering: A cautionary note," MPRA Paper 109138, University Library of Munich, Germany.
- Joshua Eklund & Jong-Min Kim, 2022. "Examining Factors That Affect Movie Gross Using Gaussian Copula Marginal Regression," Forecasting, MDPI, vol. 4(3), pages 1-14, July.
- Jong-Min Kim & Leixin Xia & Iksuk Kim & Seungjoo Lee & Keon-Hyung Lee, 2020. "Finding Nemo: Predicting Movie Performances by Machine Learning Methods," JRFM, MDPI, vol. 13(5), pages 1-12, May.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apeclt:v:26:y:2019:i:2:p:124-130. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAEL20 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.