IDEAS home Printed from https://ideas.repec.org/a/taf/apeclt/v24y2017i9p648-652.html
   My bibliography  Save this article

Assessment of the effect of the financial crisis on agents’ expectations through symbolic regression

Author

Listed:
  • Oscar Claveria
  • Enric Monte
  • Salvador Torra

Abstract

Agents’ perceptions on the state of the economy can be affected during economic crises. Tendency surveys are the main source of agents’ expectations. The main objective of this study is to assess the impact of the 2008 financial crisis on agents’ expectations. With this aim, we evaluate the capacity of survey-based expectations to anticipate economic growth in the United States, Japan, Germany and the United Kingdom. We propose a symbolic regression (SR) via genetic programming approach to derive mathematical functional forms that link survey-based expectations to GDP growth. By combining the main SR-generated indicators, we generate estimates of the evolution of GDP. Finally, we analyse the effect of the crisis on the formation of expectations, and we find an improvement in the capacity of agents’ expectations to anticipate economic growth after the crisis in all countries except Germany.

Suggested Citation

  • Oscar Claveria & Enric Monte & Salvador Torra, 2017. "Assessment of the effect of the financial crisis on agents’ expectations through symbolic regression," Applied Economics Letters, Taylor & Francis Journals, vol. 24(9), pages 648-652, May.
  • Handle: RePEc:taf:apeclt:v:24:y:2017:i:9:p:648-652
    DOI: 10.1080/13504851.2016.1218419
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/13504851.2016.1218419
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/13504851.2016.1218419?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oscar Claveria & Enric Monte & Salvador Torra, 2018. "“Tracking economic growth by evolving expectations via genetic programming: A two-step approach”," AQR Working Papers 201801, University of Barcelona, Regional Quantitative Analysis Group, revised Jan 2018.
    2. Oscar Claveria, 2021. "Forecasting with Business and Consumer Survey Data," Forecasting, MDPI, vol. 3(1), pages 1-22, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apeclt:v:24:y:2017:i:9:p:648-652. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAEL20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.