IDEAS home Printed from https://ideas.repec.org/a/taf/apeclt/v24y2017i11p779-783.html
   My bibliography  Save this article

Do consumers’ home buying attitudes explain the behaviour of US home sales?

Author

Listed:
  • Hamid Baghestani

Abstract

This article asks whether consumers’ home buying attitudes explain the behaviour of home sales by focusing on two tranquil and two uncertain periods within 1978–2015. We utilize monthly data to formulate and estimate four augmented autoregressive models with the results indicating that improvements (deteriorations) in consumers’ home buying attitudes lead to higher (lower) home sales. This conclusion remains unchanged when controlling for economic and financial indicators often cited as determinants of home sales. Overall, our article has key implications for future studies aiming to forecast home sales using attitudinal measures.

Suggested Citation

  • Hamid Baghestani, 2017. "Do consumers’ home buying attitudes explain the behaviour of US home sales?," Applied Economics Letters, Taylor & Francis Journals, vol. 24(11), pages 779-783, June.
  • Handle: RePEc:taf:apeclt:v:24:y:2017:i:11:p:779-783
    DOI: 10.1080/13504851.2016.1229401
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/13504851.2016.1229401
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/13504851.2016.1229401?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oğuzhan Çepni & Rangan Gupta & Mark E. Wohar, 2020. "The role of real estate uncertainty in predicting US home sales growth: evidence from a quantiles-based Bayesian model averaging approach," Applied Economics, Taylor & Francis Journals, vol. 52(5), pages 528-536, January.
    2. Moro Matheus Fernando & Weise Andreas Dittmar & Bornia Antonio Cezar, 2020. "Model Hybrid for Sales Forecast for the Housing Market of São Paulo," Real Estate Management and Valuation, Sciendo, vol. 28(3), pages 45-64, September.
    3. Rangan Gupta & Chi Keung Marco Lau & Vasilios Plakandaras & Wing-Keung Wong, 2019. "The role of housing sentiment in forecasting U.S. home sales growth: evidence from a Bayesian compressed vector autoregressive model," Economic Research-Ekonomska Istraživanja, Taylor & Francis Journals, vol. 32(1), pages 2554-2567, January.
    4. Hamid Baghestani & Ajalavat Viriyavipart, 2019. "Do factors influencing consumer home-buying attitudes explain output growth?," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 46(5), pages 1104-1115, August.
    5. Baghestani, Hamid, 2021. "Predicting growth in US durables spending using consumer durables-buying attitudes," Journal of Business Research, Elsevier, vol. 131(C), pages 327-336.
    6. Hamid Baghestani, 2017. "Do US consumer survey data help beat the random walk in forecasting mortgage rates?," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1343017-134, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apeclt:v:24:y:2017:i:11:p:779-783. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAEL20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.