IDEAS home Printed from https://ideas.repec.org/a/taf/amstat/v74y2020i4p359-369.html
   My bibliography  Save this article

Assessing Bayes Factor Surfaces Using Interactive Visualization and Computer Surrogate Modeling

Author

Listed:
  • Christopher T. Franck
  • Robert B. Gramacy

Abstract

Bayesian model selection provides a natural alternative to classical hypothesis testing based on p-values. While many articles mention that Bayesian model selection can be sensitive to prior specification on parameters, there are few practical strategies to assess and report this sensitivity. This article has two goals. First, we aim to educate the broader statistical community about the extent of potential sensitivity through visualization of the Bayes factor surface. The Bayes factor surface shows the value a Bayes factor takes as a function of user-specified hyperparameters. Second, we suggest surrogate modeling via Gaussian processes to visualize the Bayes factor surface in situations where computation is expensive. We provide three examples including an interactive R shiny application that explores a simple regression problem, a hierarchical linear model selection exercise, and finally surrogate modeling via Gaussian processes to a study of the influence of outliers in empirical finance. We suggest Bayes factor surfaces are valuable for scientific reporting since they (i) increase transparency by making instability in Bayes factors easy to visualize, (ii) generalize to simple and complicated examples, and (iii) provide a path for researchers to assess the impact of prior choice on modeling decisions in a wide variety of research areas. Supplementary materials for this article are available online.

Suggested Citation

  • Christopher T. Franck & Robert B. Gramacy, 2020. "Assessing Bayes Factor Surfaces Using Interactive Visualization and Computer Surrogate Modeling," The American Statistician, Taylor & Francis Journals, vol. 74(4), pages 359-369, October.
  • Handle: RePEc:taf:amstat:v:74:y:2020:i:4:p:359-369
    DOI: 10.1080/00031305.2019.1671219
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00031305.2019.1671219
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00031305.2019.1671219?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jan Hannig & Hari Iyer, 2022. "Testing for calibration discrepancy of reported likelihood ratios in forensic science," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 267-301, January.
    2. Robert B. Gramacy, 2020. "Discussion," International Statistical Review, International Statistical Institute, vol. 88(2), pages 326-329, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:amstat:v:74:y:2020:i:4:p:359-369. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UTAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.