IDEAS home Printed from https://ideas.repec.org/a/taf/amstat/v73y2019is1p312-318.html
   My bibliography  Save this article

Frequentist, Bayes, or Other?

Author

Listed:
  • Michael Lavine

Abstract

Both philosophically and in practice, statistics is dominated by frequentist and Bayesian thinking. Under those paradigms, our courses and textbooks talk about the accuracy with which true model parameters are estimated or the posterior probability that they lie in a given set. In nonparametric problems, they talk about convergence to the true function (density, regression, etc.) or the probability that the true function lies in a given set. But the usual paradigms' focus on learning the true model and parameters can distract the analyst from another important task: discovering whether there are many sets of models and parameters that describe the data reasonably well. When we discover many good models we can see in what ways they agree. Points of agreement give us more confidence in our inferences, but points of disagreement give us less. Further, the usual paradigms’ focus seduces us into judging and adopting procedures according to how well they learn the true values. An alternative is to judge models and parameter values, not procedures, and judge them by how well they describe data, not how close they come to the truth. The latter is especially appealing in problems without a true model.

Suggested Citation

  • Michael Lavine, 2019. "Frequentist, Bayes, or Other?," The American Statistician, Taylor & Francis Journals, vol. 73(S1), pages 312-318, March.
  • Handle: RePEc:taf:amstat:v:73:y:2019:i:s1:p:312-318
    DOI: 10.1080/00031305.2018.1459317
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00031305.2018.1459317
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00031305.2018.1459317?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Momin M. Malik, 2020. "A Hierarchy of Limitations in Machine Learning," Papers 2002.05193, arXiv.org, revised Feb 2020.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:amstat:v:73:y:2019:i:s1:p:312-318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UTAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.