IDEAS home Printed from https://ideas.repec.org/a/taf/amstat/v73y2019i4p340-349.html
   My bibliography  Save this article

Bias Reduction in Logistic Regression with Missing Responses When the Missing Data Mechanism is Nonignorable

Author

Listed:
  • Arnab Kumar Maity
  • Vivek Pradhan
  • Ujjwal Das

Abstract

In logistic regression with nonignorable missing responses, Ibrahim and Lipsitz proposed a method for estimating regression parameters. It is known that the regression estimates obtained by using this method are biased when the sample size is small. Also, another complexity arises when the iterative estimation process encounters separation in estimating regression coefficients. In this article, we propose a method to improve the estimation of regression coefficients. In our likelihood-based method, we penalize the likelihood by multiplying it by a noninformative Jeffreys prior as a penalty term. The proposed method reduces bias and is able to handle the issue of separation. Simulation results show substantial bias reduction for the proposed method as compared to the existing method. Analyses using real world data also support the simulation findings. An R package called brlrmr is developed implementing the proposed method and the Ibrahim and Lipsitz method.

Suggested Citation

  • Arnab Kumar Maity & Vivek Pradhan & Ujjwal Das, 2019. "Bias Reduction in Logistic Regression with Missing Responses When the Missing Data Mechanism is Nonignorable," The American Statistician, Taylor & Francis Journals, vol. 73(4), pages 340-349, October.
  • Handle: RePEc:taf:amstat:v:73:y:2019:i:4:p:340-349
    DOI: 10.1080/00031305.2017.1407359
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00031305.2017.1407359
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00031305.2017.1407359?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chunhua Chen & Jianwei Ren & Lijun Tang & Haohua Liu, 2020. "Additive integer-valued data envelopment analysis with missing data: A multi-criteria evaluation approach," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-20, June.
    2. Majid Mojirsheibani, 2022. "On the maximal deviation of kernel regression estimators with NMAR response variables," Statistical Papers, Springer, vol. 63(5), pages 1677-1705, October.
    3. Mojirsheibani, Majid, 2021. "On classification with nonignorable missing data," Journal of Multivariate Analysis, Elsevier, vol. 184(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:amstat:v:73:y:2019:i:4:p:340-349. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UTAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.