IDEAS home Printed from https://ideas.repec.org/a/taf/amstat/v73y2019i1p80-88.html
   My bibliography  Save this article

An Examination of Discrepancies in Multiple Imputation Procedures Between SAS® and SPSS®

Author

Listed:
  • Jianjun Wang
  • Dallas E. Johnson

Abstract

Multiple imputation (MI) has become a feasible method to replace missing data due to the rapid development of computer technology over the past three decades. Nonetheless, a unique issue with MI hinges on the fact that different software packages can give different results. Even when one begins with the same random number seed, conflicting findings can be obtained from the same data under an identical imputation model between SAS® and SPSS®. Consequently, as illustrated in this article, a predictor variable can be claimed both significant and not significant depending on the software being used. Based on the considerations of multiple imputation steps, including result pooling, default selection, and different numbers of imputations, practical suggestions are provided to minimize the discrepancies in the results obtained when using MI. Features of Stata® are briefly reviewed in the Discussion section to broaden the comparison of MI computing across widely used software packages.

Suggested Citation

  • Jianjun Wang & Dallas E. Johnson, 2019. "An Examination of Discrepancies in Multiple Imputation Procedures Between SAS® and SPSS®," The American Statistician, Taylor & Francis Journals, vol. 73(1), pages 80-88, January.
  • Handle: RePEc:taf:amstat:v:73:y:2019:i:1:p:80-88
    DOI: 10.1080/00031305.2018.1437078
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00031305.2018.1437078
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00031305.2018.1437078?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianjun Wang, 2021. "A Bootstrapping Assessment on A U.S. Education Indicator Construction Through Multiple Imputation," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 153(2), pages 431-442, January.
    2. G. Christopher Crawford & Vitaliy Skorodziyevskiy & Casey J. Frid & Thomas E. Nelson & Zahra Booyavi & Diana M. Hechavarria & Xuanye Li & Paul D. Reynolds & Ehsan Teymourian, 2022. "Advancing Entrepreneurship Theory Through Replication: A Case Study on Contemporary Methodological Challenges, Future Best Practices, and an Entreaty for Communality," Entrepreneurship Theory and Practice, , vol. 46(3), pages 779-799, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:amstat:v:73:y:2019:i:1:p:80-88. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UTAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.