IDEAS home Printed from https://ideas.repec.org/a/taf/amstat/v73y2019i1p22-31.html
   My bibliography  Save this article

Comparing Objective and Subjective Bayes Factors for the Two-Sample Comparison: The Classification Theorem in Action

Author

Listed:
  • Mithat Gönen
  • Wesley O. Johnson
  • Yonggang Lu
  • Peter H. Westfall

Abstract

Many Bayes factors have been proposed for comparing population means in two-sample (independent samples) studies. Recently, Wang and Liu presented an “objective” Bayes factor (BF) as an alternative to a “subjective” one presented by Gönen et al. Their report was evidently intended to show the superiority of their BF based on “undesirable behavior” of the latter. A wonderful aspect of Bayesian models is that they provide an opportunity to “lay all cards on the table.” What distinguishes the various BFs in the two-sample problem is the choice of priors (cards) for the model parameters. This article discusses desiderata of BFs that have been proposed, and proposes a new criterion to compare BFs, no matter whether subjectively or objectively determined. A BF may be preferred if it correctly classifies the data as coming from the correct model most often. The criterion is based on a famous result in classification theory to minimize the total probability of misclassification. This criterion is objective, easily verified by simulation, shows clearly the effects (positive or negative) of assuming particular priors, provides new insights into the appropriateness of BFs in general, and provides a new answer to the question, “Which BF is best?”

Suggested Citation

  • Mithat Gönen & Wesley O. Johnson & Yonggang Lu & Peter H. Westfall, 2019. "Comparing Objective and Subjective Bayes Factors for the Two-Sample Comparison: The Classification Theorem in Action," The American Statistician, Taylor & Francis Journals, vol. 73(1), pages 22-31, January.
  • Handle: RePEc:taf:amstat:v:73:y:2019:i:1:p:22-31
    DOI: 10.1080/00031305.2017.1322142
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00031305.2017.1322142
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00031305.2017.1322142?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Yanli & Han, Xiaoyi & Chen, Ying, 2020. "Bayesian estimation and model selection of threshold spatial Durbin model," Economics Letters, Elsevier, vol. 188(C).
    2. Ye, Yuan & Lu, Yonggang & Robinson, Powell & Narayanan, Arunachalam, 2022. "An empirical Bayes approach to incorporating demand intermittency and irregularity into inventory control," European Journal of Operational Research, Elsevier, vol. 303(1), pages 255-272.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:amstat:v:73:y:2019:i:1:p:22-31. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UTAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.