IDEAS home Printed from https://ideas.repec.org/a/taf/amstat/v70y2016i3p275-284.html
   My bibliography  Save this article

The Number of MCMC Draws Needed to Compute Bayesian Credible Bounds

Author

Listed:
  • Jia Liu
  • Daniel J. Nordman
  • William Q. Meeker

Abstract

In the past 20 years, there has been a staggering increase in the use of Bayesian statistical inference, based on Markov chain Monte Carlo (MCMC) methods, to estimate model parameters and other quantities of interest. This trend exists in virtually all areas of engineering and science. In a typical application, researchers will report estimates of parametric functions (e.g., quantiles, probabilities, or predictions of future outcomes) and corresponding intervals from MCMC methods. One difficulty with the use of inferential methods based on Monte Carlo (MC) is that reported results may be inaccurate due to MC error. MC error, however, can be made arbitrarily small by increasing the number of MC draws. Most users of MCMC methods seem to use indirect diagnostics, trial-and-error, or guess-work to decide how long to run a MCMC algorithm and accuracy of MCMC output results is rarely reported. Unless careful analysis is done, reported numerical results may contain digits that are completely meaningless. In this article, we describe an algorithm to provide direct guidance on the number of MCMC draws needed to achieve a desired amount of precision (i.e., a specified number of accurate significant digits) for Bayesian credible interval endpoints.

Suggested Citation

  • Jia Liu & Daniel J. Nordman & William Q. Meeker, 2016. "The Number of MCMC Draws Needed to Compute Bayesian Credible Bounds," The American Statistician, Taylor & Francis Journals, vol. 70(3), pages 275-284, July.
  • Handle: RePEc:taf:amstat:v:70:y:2016:i:3:p:275-284
    DOI: 10.1080/00031305.2016.1158738
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00031305.2016.1158738
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00031305.2016.1158738?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meena Madhavan & Mohammed Ali Sharafuddin & Pairach Piboonrungroj & Ching-Chiao Yang, 2023. "Short-term Forecasting for Airline Industry: The Case of Indian Air Passenger and Air Cargo," Global Business Review, International Management Institute, vol. 24(6), pages 1145-1179, December.
    2. Davila-Frias, Alex & Yodo, Nita & Le, Trung & Yadav, Om Prakash, 2023. "A deep neural network and Bayesian method based framework for all-terminal network reliability estimation considering degradation," Reliability Engineering and System Safety, Elsevier, vol. 229(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:amstat:v:70:y:2016:i:3:p:275-284. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UTAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.