IDEAS home Printed from https://ideas.repec.org/a/taf/amstat/v66y2012i1p8-15.html
   My bibliography  Save this article

Exact Binomial Confidence Intervals for Randomized Response

Author

Listed:
  • Jesse Frey
  • Andrés Pérez

Abstract

We consider the problem of finding an exact confidence interval for a proportion that is estimated using randomized response. For many randomized response schemes, this is equivalent to finding an exact confidence interval for a bounded binomial proportion. Such intervals can be obtained by truncating standard exact binomial confidence intervals, but the truncated intervals may be empty or misleadingly short. We address this problem by using exact confidence intervals obtained by inverting a likelihood ratio test that takes into account that the proportion is bounded. A simple adjustment is made to keep the intervals from being excessively conservative. An R function for computing the intervals is available as online supplementary material.

Suggested Citation

  • Jesse Frey & Andrés Pérez, 2012. "Exact Binomial Confidence Intervals for Randomized Response," The American Statistician, Taylor & Francis Journals, vol. 66(1), pages 8-15, February.
  • Handle: RePEc:taf:amstat:v:66:y:2012:i:1:p:8-15
    DOI: 10.1080/00031305.2012.663680
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00031305.2012.663680
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00031305.2012.663680?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tan, Ming T. & Tian, Guo-Liang & Tang, Man-Lai, 2009. "Sample Surveys With Sensitive Questions: A Nonrandomized Response Approach," The American Statistician, American Statistical Association, vol. 63(1), pages 9-16.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andreas Lagerås & Mathias Lindholm, 2020. "How to ask sensitive multiple‐choice questions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(2), pages 397-424, June.
    2. Raghunath Arnab & Dahud Kehinde Shangodoyin & Antonio Arcos, 2019. "Nonrandomized Response Model For Complex Survey Designs," Statistics in Transition New Series, Polish Statistical Association, vol. 20(1), pages 67-86, March.
    3. Liu, Yin & Tian, Guo-Liang, 2013. "A variant of the parallel model for sample surveys with sensitive characteristics," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 115-135.
    4. Heiko Groenitz, 2015. "Using prior information in privacy-protecting survey designs for categorical sensitive variables," Statistical Papers, Springer, vol. 56(1), pages 167-189, February.
    5. Truong-Nhat Le & Shen-Ming Lee & Phuoc-Loc Tran & Chin-Shang Li, 2023. "Randomized Response Techniques: A Systematic Review from the Pioneering Work of Warner (1965) to the Present," Mathematics, MDPI, vol. 11(7), pages 1-26, April.
    6. Daniel Gingerich & Virginia Oliveros & Ana Corbacho & Mauricio Ruiz-Vega, 2015. "Corruption as a Self-Fulfilling Prophecy: Evidence from a Survey Experiment in Costa Rica," IDB Publications (Working Papers) 88334, Inter-American Development Bank.
    7. Guo-Liang Tian, 2014. "A new non-randomized response model: The parallel model," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 68(4), pages 293-323, November.
    8. Qiu, Shi-Fang & Zou, G.Y. & Tang, Man-Lai, 2014. "Sample size determination for estimating prevalence and a difference between two prevalences of sensitive attributes using the non-randomized triangular design," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 157-169.
    9. Heiko Groenitz, 2014. "A new privacy-protecting survey design for multichotomous sensitive variables," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(2), pages 211-224, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:amstat:v:66:y:2012:i:1:p:8-15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UTAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.