IDEAS home Printed from https://ideas.repec.org/a/srs/jtpref/v5y2014i2p117-141.html
   My bibliography  Save this article

Analyzing The Dynamics Of Gross Domestic Product Growth. A Mixed Frequency Model Approach

Author

Listed:
  • Ray FRANCO

    (School of Statistics, University of the Philippines Diliman, Philippines)

  • Dennis MAPA

    (School of Statistics, University of the Philippines Diliman, Philippines)

Abstract

Frequency mismatch has been a problem in time series econometrics. Many monthly economic and financial indicators are normally aggregated to match quarterly macroeconomic series such as Gross Domestic Product when performing econometric analysis. However, temporal aggregation, although widely accepted, is prone to information loss. To address this issue, mixed frequency modelling is employed by using state space models with time-varying parameters. Quarter-on-quarter growth rate of GDP estimates are treated as monthly series with missing observation. Using Kalman filter algorithm, state space models are estimated with eleven monthly economic indicators as explanatory variables. A one-step-ahead forecast for GDP growth rates is generated and as more indicators are included in the model, the predicted values became closer to the actual data. Further evaluation revealed that among the group competing models, using Consumer Price Index (CPI), growth rates of Philippine Stock Exchange Index (PSEi), Exchange Rate, Real Money Supply, Wholesale Price Index (WPI) and Merchandise Exports are the more important determinants of GDP growth and generated the most desirable forecasts (lower forecast errors).

Suggested Citation

  • Ray FRANCO & Dennis MAPA, 2014. "Analyzing The Dynamics Of Gross Domestic Product Growth. A Mixed Frequency Model Approach," Theoretical and Practical Research in the Economic Fields, ASERS Publishing, vol. 5(2), pages 117-141.
  • Handle: RePEc:srs:jtpref:v:5:y:2014:i:2:p:117-141
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:srs:jtpref:v:5:y:2014:i:2:p:117-141. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Claudiu Popirlan (email available below). General contact details of provider: http://journals.aserspublishing.eu/tpref .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.