IDEAS home Printed from https://ideas.repec.org/a/spt/stecon/v1y2012i3f1_3_7.html
   My bibliography  Save this article

Mixed-fractional Models to Credit Risk Pricing

Author

Listed:
  • Xichao Sun
  • Litan Yan

Abstract

This paper proposes a mixed fractional Brownian motion version of a well-known credit risk pricing structural model: the Merton model. Assume that the value of the firm obeys to a geometric mixed fractional Brownian motion, default probability, pricing of bonds, values of stocks and credit spreads are derived. Figures are given to illustrate the effectiveness of the result and show that the mixed-fractional models to credit risk pricing is a reasonable one.

Suggested Citation

  • Xichao Sun & Litan Yan, 2012. "Mixed-fractional Models to Credit Risk Pricing," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 1(3), pages 1-7.
  • Handle: RePEc:spt:stecon:v:1:y:2012:i:3:f:1_3_7
    as

    Download full text from publisher

    File URL: http://www.scienpress.com/Upload/JSEM%2fVol%201_3_7.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Xinjiang & Chen, Wenting, 2014. "The pricing of credit default swaps under a generalized mixed fractional Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 404(C), pages 26-33.
    2. Zhaoqiang Yang, 2017. "Efficient valuation and exercise boundary of American fractional lookback option in a mixed jump-diffusion model," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(02n03), pages 1-29, June.
    3. Yang, Zhaoqiang, 2020. "Default probability of American lookback option in a mixed jump-diffusion model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    4. Chen, Wenting & Yan, Bowen & Lian, Guanghua & Zhang, Ying, 2016. "Numerically pricing American options under the generalized mixed fractional Brownian motion model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 180-189.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spt:stecon:v:1:y:2012:i:3:f:1_3_7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Eleftherios Spyromitros-Xioufis (email available below). General contact details of provider: http://www.scienpress.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.