IDEAS home Printed from https://ideas.repec.org/a/spt/apfiba/v4y2014i6f4_6_3.html
   My bibliography  Save this article

Market Risk Measures using Finite Gaussian Mixtures

Author

Listed:
  • Jorge Rosales Contreras

Abstract

Value at Risk (VaR) is the most popular market risk measure as it summarizes in one figure the exposure to different risk factors. It had been around for over a decade when Expected Shortfall (ES) emerged to correct its shortcomings. Both risk measures can be estimated under several models. We explore the application of a parametric model to fit the joint distribution of risk factor returns based on multivariate finite Gaussian Mixtures, derive a closed-form expression for ES under this model and estimate risk measures for a multi-asset portfolio over an extended period. We then compare results versus benchmark models (Historical Simulation and Normal) through back-testing all of them at several confidence levels. Evidence shows that the proposed model is a competitive one for the estimation of VaR and ES.

Suggested Citation

  • Jorge Rosales Contreras, 2014. "Market Risk Measures using Finite Gaussian Mixtures," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 4(6), pages 1-3.
  • Handle: RePEc:spt:apfiba:v:4:y:2014:i:6:f:4_6_3
    as

    Download full text from publisher

    File URL: http://www.scienpress.com/Upload/JAFB%2fVol%204_6_3.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Enrique Molina‐Muñoz & Andrés Mora‐Valencia & Javier Perote, 2021. "Backtesting expected shortfall for world stock index ETFs with extreme value theory and Gram–Charlier mixtures," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4163-4189, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spt:apfiba:v:4:y:2014:i:6:f:4_6_3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Eleftherios Spyromitros-Xioufis (email available below). General contact details of provider: http://www.scienpress.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.