Author
Listed:
- Suraj Kumar Bhagat
(Marwadi University)
Abstract
This study introduces a coalesce forecasting model tailored for flood-prone regions, specifically focusing on Bihar, India. Research has revealed significant disparities in rainfall patterns across various zones such as Tirhut, Patna, and Munger zones experiencing greater mean rainfall than Bhagalpur and Kosi. To evaluate the forecasting capabilities, coalescing methods were applied which includes the autoregressive integrated moving average (ARIMA), exponential smoothing state space (ETS), neural network autoregressive (NNAR), and seasonal-trend decomposition. Moreover, Loess (STL) methods, and trigonometric seasonality, Box‒Cox transformation, ARMA errors, and trend and seasonal components (TBATS) were also employed to contrast the benchmark models such as the seasonal naïve, naïve, and mean methods. These methods were evaluated using error evaluators such as residual error, root mean square error (RMSE), mean absolute error (MAE), mean absolute scaled error (MASE), and autocorrelation of errors at lag 1 (ACF1) to determine the performance of these techniques. Additionally, statistical tests, such as the Box–Pierce and Box–Ljung tests, supported these findings. Among the error evaluators and forecasting models, the ETS and NNAR models remain the top choices for Saran-Tirhut-Bhagalpur and Munger-Magadh-Kosi, respectively, effectively capturing rainfall patterns and minimizing residual errors, as indicated by low RMSE values. Moreover, ARIMA and TBATS remain the top choices for Patna, Purnia and Darbhanga, respectively, followed by ETS model. In addition, the STL model secured the second position for Saran, Tirhut, Bhagalpur, and Purnia zones. This research emphasizes the importance of understanding regional rainfall dynamics for effective flood risk management and climate adaptation strategies. This study provides valuable tools for water resource management and agricultural planning in Bihar amidst climate variability challenges. It advocates for rainfall trend analysis followed by forecasting to achieve more precise water resource management and planning.
Suggested Citation
Suraj Kumar Bhagat, 2025.
"Navigating the Challenges of Rainfall Variability: Precipitation Forecasting using Coalesce Model,"
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 39(5), pages 2251-2280, March.
Handle:
RePEc:spr:waterr:v:39:y:2025:i:5:d:10.1007_s11269-024-04065-7
DOI: 10.1007/s11269-024-04065-7
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:39:y:2025:i:5:d:10.1007_s11269-024-04065-7. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.