IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v39y2025i3d10.1007_s11269-024-04006-4.html
   My bibliography  Save this article

Water Resources Quality Indicators Monitoring by Nonlinear Programming and Simulated Annealing Optimization with Ensemble Learning Approaches

Author

Listed:
  • Mojtaba Poursaeid

    (Payame Noor University)

  • Amir Hossein Poursaeed

    (Lorestan University)

  • Saeid Shabanlou

    (Islamic Azad University)

Abstract

Recently, due to global climate change and population growth, environmental protection has become more interested. Water is the main critical issue because it is the most significant environmental resource. Therefore, this study introduces a novel approach to examine, modeling, and addressing the monitoring of water quality (WQ) critical scenario related to unexpected extreme variations of crucial indicators (UEVCI). Therefore, this research integrates ensemble machine learning (EML) techniques with Non-linear programming (NLP) and Simulated annealing algorithm (SAA) to develop an optimal weighted ensemble models. New development models were nonlinear-programmed ensemble machine learning (NLEML) and simulated annealing ensemble machine learning (SAEML). Besides, we developed least-squared boosted regression tree (LsBRT), artificial neural network (ANN), and multiple linear regression (MLR) models individually to compare the performance of new ensemble models. The South Platte River Basin in Colorado, USA was the study region. The initial dataset was extracted through the United States Geologic Survey (USGS) from 2023 to 2024. Preprocessing approaches such as cleaning missing data (CMD), cleaning outlier data (COD), and k-fold cross validation (KFCV) with k = 5 were used to prepare the dataset. The final dataset was utilized to examine variations of essential parameters that affect water health and quality, including the power of hydrogen (pH) and dissolved oxygen (DO). The results showed that the NLEML provided the most accurate results in estimating fluctuation of pH parameter with an R2 coefficient of 0.85. Also, the NLEML estimated the variance of the DO parameter with an R2 equal to of 0.79, resulting in an outperforming simulation.

Suggested Citation

  • Mojtaba Poursaeid & Amir Hossein Poursaeed & Saeid Shabanlou, 2025. "Water Resources Quality Indicators Monitoring by Nonlinear Programming and Simulated Annealing Optimization with Ensemble Learning Approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 39(3), pages 1073-1087, February.
  • Handle: RePEc:spr:waterr:v:39:y:2025:i:3:d:10.1007_s11269-024-04006-4
    DOI: 10.1007/s11269-024-04006-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-024-04006-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-024-04006-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:39:y:2025:i:3:d:10.1007_s11269-024-04006-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.