Author
Listed:
- Xiaoxuan Zhang
(Northwest A&F University
Northwest A&F University)
- Songbai Song
(Northwest A&F University
Northwest A&F University)
- Tianli Guo
(Northwest A&F University
Northwest A&F University)
Abstract
In this study, a novel nonlinear segmental runoff ensemble forecast model based on the Bayesian model averaging (BMA) algorithm (NLTM-BMAm(P-III)) is proposed based on multimodel ensemble prediction for forecasting monthly runoff and quantifying forecast uncertainty. Four nonlinear time series models were used as ensemble members, and runoff segmented intervals were divided based on P-III type hydrological frequency curves. On this basis, the BMA algorithm was used to obtain the weight sets of each interval after the Box‒Cox transformation. Finally, the mean and probability forecasts were obtained using the weighted average method and the Monte Carlo method. The model was applied to monthly runoff forecasts at eight hydrological stations in the Hei River Basin and two hydrological stations in the Wei River Basin; and compared with the whole-segment simple averaging model NLTM-SMA, the whole-segment Bayesian averaging model NLTM-BMA1 and the segmented Bayesian averaging model with normal distribution partitioning NLTM-BMAm(Normal). The results show that (1) the BMA algorithm yields more reliable forecasts than the SMA algorithm, (2) Segmentation criteria appropriate for the runoff distribution can improve the forecasting accuracy, which would otherwise be reduced, and (3) Compared with the NLTM-SMA and NLTM-BMA1 models, the NLTM-BMAm(P-III) model yields a higher CR value, demonstrating that the segmented ensemble forecasting model can improve the accuracy of probability prediction by considering the diversity of ensemble members. Additionally, the BMA algorithm has good applicability in the segmented ensemble model. The model provides a new method for medium- and long-term runoff forecasting.
Suggested Citation
Xiaoxuan Zhang & Songbai Song & Tianli Guo, 2024.
"Nonlinear Segmental Runoff Ensemble Prediction Model Using BMA,"
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(9), pages 3429-3446, July.
Handle:
RePEc:spr:waterr:v:38:y:2024:i:9:d:10.1007_s11269-024-03824-w
DOI: 10.1007/s11269-024-03824-w
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:38:y:2024:i:9:d:10.1007_s11269-024-03824-w. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.