Author
Listed:
- Wen-chuan Wang
(North China University of Water Resources and Electric Power)
- Yu-jin Du
(North China University of Water Resources and Electric Power
Yellow River Conservancy Commission)
- Kwok-wing Chau
(The Hong Kong Polytechnic University)
- Chun-Tian Cheng
(Dalian University of Technology)
- Dong-mei Xu
(North China University of Water Resources and Electric Power)
- Wen-Tao Zhuang
(North China University of Water Resources and Electric Power)
Abstract
The optimal planning and management of modern water resources depends highly on reliable and accurate runoff forecasting. Data preprocessing technology can provide new possibilities for improving the accuracy of runoff forecasting when basic physical relationships cannot be captured using a single prediction model. Yet, few studies have evaluated the performances of various data preprocessing technologies in predicting monthly runoff time series so far. In order to fill this research gap, this paper investigates the potential of five data preprocessing techniques based on the gated recurrent unit network (GRU) model for monthly runoff prediction, namely variational mode decomposition (VMD), wavelet packet decomposition (WPD), complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), extreme-point symmetric mode decomposition (ESMD), and singular spectrum analysis (SSA). In this study, the original monthly runoff data is first decomposed into a set of subcomponents using five data preprocessing methods; second, each component is predicted by developing an appropriate GRU model; and finally, the forecasting results of different two-stage hybrid models are obtained by aggregating the forecast results of the corresponding subcomponents. Four performance metrics are employed as the evaluation benchmarks. The experimental results from two Hydropower Stations in China show that five data preprocessing techniques can attain satisfying prediction results, while VMD and WPD methods can yield better performance than CEEMDAN, ESMD, and SSA in both training and testing periods in terms of four indexes. Indeed, it is significantly important to carefully determine an appropriate data preprocessing method according to the actual characteristics of the study area.
Suggested Citation
Wen-chuan Wang & Yu-jin Du & Kwok-wing Chau & Chun-Tian Cheng & Dong-mei Xu & Wen-Tao Zhuang, 2024.
"Evaluating the Performance of Several Data Preprocessing Methods Based on GRU in Forecasting Monthly Runoff Time Series,"
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(9), pages 3135-3152, July.
Handle:
RePEc:spr:waterr:v:38:y:2024:i:9:d:10.1007_s11269-024-03806-y
DOI: 10.1007/s11269-024-03806-y
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:38:y:2024:i:9:d:10.1007_s11269-024-03806-y. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.