Author
Listed:
- Masoud Karbasi
(University of Zanjan
University of Prince Edward Island)
- Mohammad Ghasemian
(University of Zanjan)
- Mehdi Jamei
(University of Prince Edward Island
Shahid Chamran University of Ahvaz
Al-Ayen University)
- Anurag Malik
(Punjab Agricultural University, Regional Research Station)
- Ozgur Kisi
(Lübeck University of Applied Science
Ilia State University)
Abstract
Flow resistance in natural gravel-bed rivers must be precisely predicted in order for water-related infrastructure to be designed effectively. Cluster microforms are significant factors in determining the resistance of flow in rivers with gravel beds. To precisely estimate the cluster microform-induced Darcy-Weisbach roughness coefficient, the current study utilized two novel and robust data-intelligence paradigms: Unscented Kalman Filter (UKF) and Extended Kalman Filter (EKF) -based Artificial Neural Networks (UKF-ANN and EKF-ANN), in addition to Response Surface Methodology (RSM) and Multi-layer Perceptron Neural Network (MLPNN). A total of 128 sets of laboratory data were used to develop the models, which encompassed a range of geometric and hydraulic scenarios. Various performance metrics, including, Mean Absolute Percentage Error (MAPE) Root Mean Square Error (RMSE) and Correlation Coefficient (R) were employed to assess the models' performance. The results showed that the implemented machine learning methods (i.e., MLPNN, UKF-ANN, EKF-ANN) had a good performance. Comparison of machine learning models showed that the EKF-ANN (R = 0.9747, MAPE = 7.73, RMSE = 0.0041) and UKF-ANN (R = 0.9617, MAPE = 8.17, RMSE = 0.0050) models provided higher accuracy compared to MLPNN (R = 0.940, MAPE = 11.38, RMSE = 0.0064,) and RSM (R = 0.957, MAPE = 11.02, RMSE = 0.0057). Moreover, the sensitivity analysis demonstrates that the roughness coefficient is primarily affected by the hydraulic radius to the longitudinal distance of clusters (R/λ).
Suggested Citation
Masoud Karbasi & Mohammad Ghasemian & Mehdi Jamei & Anurag Malik & Ozgur Kisi, 2024.
"Developing Extended and Unscented Kalman Filter-Based Neural Networks to Predict Cluster-Induced Roughness in Gravel Bed Rivers,"
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(8), pages 3023-3048, June.
Handle:
RePEc:spr:waterr:v:38:y:2024:i:8:d:10.1007_s11269-024-03803-1
DOI: 10.1007/s11269-024-03803-1
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:38:y:2024:i:8:d:10.1007_s11269-024-03803-1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.