Author
Listed:
- Fatemeh Javanbakht-Sheikhahmad
(Razi Univeristy)
- Farahnaz Rostami
(Razi Univeristy)
- Hossein Azadi
(University of Liège)
- Hadi Veisi
(Kirchhoff Lab, Penn State University
Shahid Beheshti University)
- Farzad Amiri
(Kermanshah Univeristy of Technology)
- Frank Witlox
(Ghent University)
Abstract
Population growth, coupled with climate and social shifts, has resulted in a global phenomenon of water scarcity. Yet, the effect of social factors on water resources has been poorly studied. Hence, this study aimed to identify the key parameters in social systems that significantly impact hydrological system change and presents the best scenario for water management. The system dynamic (SD) approach was employed in this research to construct a combined framework of policies based on scenarios, which aimed to ensure social sustainability and coupled human-water systems. For this purpose, the SD model was simulated on the Gavshan Basin in the west of Iran for the long-term period 2020-2050. The results indicate that the water resources in the Gavshan Basin cannot meet the growth of the population. Meanwhile, about 20% of the water stored in the Gavshan Dam is not effectively used and flows out of the irrigation network as wastewater. The result of the sensitivity analysis showed that in scenarios 3 and 4, the policy of wastewater reuse in the agricultural sector significantly increases available water resources, has a major impact on water supply, and increases crop yields. These findings can be applied by policy-makers. Instead of making efforts only to change hydrological systems, policies need to first focus on socio-hydrology systems sustainability. It is suggested that national organizations' support should be implemented to prevent the adverse consequences of wastewater reuse in agriculture and reduce treated wastewater risks.
Suggested Citation
Fatemeh Javanbakht-Sheikhahmad & Farahnaz Rostami & Hossein Azadi & Hadi Veisi & Farzad Amiri & Frank Witlox, 2024.
"Agricultural Water Resource Management in the Socio-Hydrology: A Framework for Using System Dynamics Simulation,"
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(8), pages 2753-2772, June.
Handle:
RePEc:spr:waterr:v:38:y:2024:i:8:d:10.1007_s11269-024-03786-z
DOI: 10.1007/s11269-024-03786-z
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:38:y:2024:i:8:d:10.1007_s11269-024-03786-z. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.