IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v38y2024i1d10.1007_s11269-023-03666-y.html
   My bibliography  Save this article

Recent Advances in Surface Water Quality Prediction Using Artificial Intelligence Models

Author

Listed:
  • Qingqing Zhang

    (Tianjin University)

  • Xue-yi You

    (Tianjin University)

Abstract

Accurate water quality prediction plays a vital role in sustainable water management. The artificial intelligence models commonly used in water management including artificial neural networks, long short-term memory, support vector machine, adaptive neuro-fuzzy inference are reviewed. The hybrid models, artificial intelligence coupled with decomposition and optimization algorithms, are thoroughly discussed. After a brief introduction of each model, a review of recent publications to understand the potential and application of these models in surface water quality modeling is proposed. Based on the selected 60 papers published over the past decade (2013–2023), the statistical results in terms of data pre-processing, input and output parameters, modeling approaches, and performance evaluation are analyzed to reveal the latest trends. Artificial neural network has flexible variants to suit many scenarios and long short-term memory model has the advantage of processing time series data. Most remarkable performance in the single and hybrid algorithms is found. Hybrid algorithms generate more satisfactory results in predicting accuracy. The application of these models improves the decision-making mechanisms for environmental governance and show immense potential for various applications.

Suggested Citation

  • Qingqing Zhang & Xue-yi You, 2024. "Recent Advances in Surface Water Quality Prediction Using Artificial Intelligence Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(1), pages 235-250, January.
  • Handle: RePEc:spr:waterr:v:38:y:2024:i:1:d:10.1007_s11269-023-03666-y
    DOI: 10.1007/s11269-023-03666-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-023-03666-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-023-03666-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jingjing Xia & Jin Zeng, 2022. "Environmental Factors Assisted the Evaluation of Entropy Water Quality Indices with Efficient Machine Learning Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 2045-2060, April.
    2. Zaher Mundher Yaseen & Majeed Mattar Ramal & Lamine Diop & Othman Jaafar & Vahdettin Demir & Ozgur Kisi, 2018. "Hybrid Adaptive Neuro-Fuzzy Models for Water Quality Index Estimation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(7), pages 2227-2245, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenwen Wu & Zilin Wei & Lifeng Wu, 2024. "Public Satisfaction with Water Quality Under the Implementation of Water Quality Monitor Standard System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(11), pages 4197-4212, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ming Wei & Xue-yi You, 2022. "Monthly rainfall forecasting by a hybrid neural network of discrete wavelet transformation and deep learning," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 4003-4018, September.
    2. Mingjing Guo & Ziyu Jiang & Yan Bu & Jinhua Cheng, 2019. "Supporting Sustainable Development of Water Resources: A Social Welfare Maximization Game Model," IJERPH, MDPI, vol. 16(16), pages 1-15, August.
    3. Lamine Diop & Saeed Samadianfard & Ansoumana Bodian & Zaher Mundher Yaseen & Mohammad Ali Ghorbani & Hana Salimi, 2020. "Annual Rainfall Forecasting Using Hybrid Artificial Intelligence Model: Integration of Multilayer Perceptron with Whale Optimization Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(2), pages 733-746, January.
    4. Vanita Jain & Aarushi Dhingra & Eeshita Gupta & Ish Takkar & Rachna Jain & Sardar M. N. Islam, 2023. "Influence of Land Surface Temperature and Rainfall on Surface Water Change: An Innovative Machine Learning Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(8), pages 3013-3035, June.
    5. Hye-Suk Yi & Sangyoung Park & Kwang-Guk An & Keun-Chang Kwak, 2018. "Algal Bloom Prediction Using Extreme Learning Machine Models at Artificial Weirs in the Nakdong River, Korea," IJERPH, MDPI, vol. 15(10), pages 1-20, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:38:y:2024:i:1:d:10.1007_s11269-023-03666-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.