IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v38y2024i11d10.1007_s11269-024-03864-2.html
   My bibliography  Save this article

Boosting Progressive Optimality Algorithm Performance in Optimizing Complex Large-Scale Multi-Reservoir System Operations by Using Discrepant Optimization Windows and Disturbance-Response Strategy

Author

Listed:
  • Nan Xu

    (Zheguang Middle School of Keqiao District of Shaoxing City)

  • Jia Chen

    (Zhuji Municipal Water Conservancy Bureau)

Abstract

The Progressive Optimality Algorithm (POA) is a powerful technique widely used for optimizing multi-reservoir operations; however, two crucial downsides cumber its application to complex large-scale multi-reservoir systems, which are insufficient search directions and the dimensionality problem—the former limits the POA’s precision, while the latter reduces its efficiency. Although several POA variants have been developed to overcome these downsides, a further balance between the precision and efficiency of the algorithm is required to boost the POA’s capability of optimizing the operation of complex large-scale multi-reservoir systems. In view of this, we made modifications to the original algorithm and developed a new POA variant, referred to as the Direct Search Algorithm Based on Disturbance-Response Strategy (DRDSA). On one hand, we changed the POA’s uniform optimization window for all reservoirs to discrepant optimization windows for varying reservoirs to enrich the search direction set of the algorithm. On the other hand, we introduced a disturbance-response strategy into the solution of sub-problems to handle the POA’s dimensionality problem. Two multi-reservoir operation optimization problems were employed to test the performance of the DRDSA, and seven advanced alternatives including two existing POA variants were used for comparison. The results showed the improved precision and efficiency of the DRDSA. Thus, a new technique is available for optimizing the operation of complex large-scale multi-reservoir systems.

Suggested Citation

  • Nan Xu & Jia Chen, 2024. "Boosting Progressive Optimality Algorithm Performance in Optimizing Complex Large-Scale Multi-Reservoir System Operations by Using Discrepant Optimization Windows and Disturbance-Response Strategy," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(11), pages 4269-4285, September.
  • Handle: RePEc:spr:waterr:v:38:y:2024:i:11:d:10.1007_s11269-024-03864-2
    DOI: 10.1007/s11269-024-03864-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-024-03864-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-024-03864-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jia Chen, 2021. "Long-Term Joint Operation of Cascade Reservoirs Using Enhanced Progressive Optimality Algorithm and Dynamic Programming Hybrid Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(7), pages 2265-2279, May.
    2. Seyed-Mohammad Hosseini-Moghari & Reza Morovati & Mohammad Moghadas & Shahab Araghinejad, 2015. "Optimum Operation of Reservoir Using Two Evolutionary Algorithms: Imperialist Competitive Algorithm (ICA) and Cuckoo Optimization Algorithm (COA)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3749-3769, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kobra Rahmati & Parisa-Sadat Ashofteh & Hugo A. Loáiciga, 2021. "Application of the Grasshopper Optimization Algorithm (GOA) to the Optimal Operation of Hydropower Reservoir Systems Under Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(13), pages 4325-4348, October.
    2. Mojtaba Moravej & Seyed-Mohammad Hosseini-Moghari, 2016. "Large Scale Reservoirs System Operation Optimization: the Interior Search Algorithm (ISA) Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3389-3407, August.
    3. Majid Mohammadi & Saeed Farzin & Sayed-Farhad Mousavi & Hojat Karami, 2019. "Investigation of a New Hybrid Optimization Algorithm Performance in the Optimal Operation of Multi-Reservoir Benchmark Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(14), pages 4767-4782, November.
    4. Zhe Yang & Kan Yang & Hu Hu & Lyuwen Su, 2019. "The Cascade Reservoirs Multi-Objective Ecological Operation Optimization Considering Different Ecological Flow Demand," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(1), pages 207-228, January.
    5. Iman Ahmadianfar & Bijay Halder & Salim Heddam & Leonardo Goliatt & Mou Leong Tan & Zulfaqar Sa’adi & Zainab Al-Khafaji & Raad Z. Homod & Tarik A. Rashid & Zaher Mundher Yaseen, 2023. "An Enhanced Multioperator Runge–Kutta Algorithm for Optimizing Complex Water Engineering Problems," Sustainability, MDPI, vol. 15(3), pages 1-28, January.
    6. Xiaohui Shen & Yonggang Wu & Lingxi Li & Peng He & Tongxin Zhang, 2024. "A Novel Hybrid Algorithm Based on Beluga Whale Optimization and Harris Hawks Optimization for Optimizing Multi-Reservoir Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(12), pages 4883-4909, September.
    7. Behrang Beiranvand & Parisa-Sadat Ashofteh, 2023. "A Systematic Review of Optimization of Dams Reservoir Operation Using the Meta-heuristic Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(9), pages 3457-3526, July.
    8. Bo Ming & Jian-xia Chang & Qiang Huang & Yi-min Wang & Sheng-zhi Huang, 2015. "Optimal Operation of Multi-Reservoir System Based-On Cuckoo Search Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5671-5687, December.
    9. Vijendra Kumar & S. M. Yadav, 2018. "Optimization of Reservoir Operation with a New Approach in Evolutionary Computation Using TLBO Algorithm and Jaya Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(13), pages 4375-4391, October.
    10. Yuxin Zhu & Jianzhong Zhou & Yongchuan Zhang & Zhiqiang Jiang & Benjun Jia & Wei Fang, 2022. "Optimal Energy Storage Operation Chart and Output Distribution of Cascade Reservoirs Based on Operating Rules Derivation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(14), pages 5751-5766, November.
    11. Vijendra Kumar & S. M. Yadav, 2019. "Optimization of Cropping Patterns Using Elitist-Jaya and Elitist-TLBO Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(5), pages 1817-1833, March.
    12. Hojat Karami & Sayed Farhad Mousavi & Saeed Farzin & Mohammad Ehteram & Vijay P. Singh & Ozgur Kisi, 2018. "Improved Krill Algorithm for Reservoir Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3353-3372, August.
    13. Zaher Mundher Yaseen & Mohammad Ehteram & Md. Shabbir Hossain & Chow Ming Fai & Suhana Binti Koting & Nuruol Syuhadaa Mohd & Wan Zurina Binti Jaafar & Haitham Abdulmohsin Afan & Lai Sai Hin & Nuratiah, 2019. "A Novel Hybrid Evolutionary Data-Intelligence Algorithm for Irrigation and Power Production Management: Application to Multi-Purpose Reservoir Systems," Sustainability, MDPI, vol. 11(7), pages 1-28, April.
    14. Fatemeh Barzegari Banadkooki & Jan Adamowski & Vijay P. Singh & Mohammad Ehteram & Hojat Karami & Sayed Farhad Mousavi & Saeed Farzin & Ahmed EL-Shafie, 2020. "Crow Algorithm for Irrigation Management: A Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(3), pages 1021-1045, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:38:y:2024:i:11:d:10.1007_s11269-024-03864-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.