Evaluating the Effect of Downstream Channel Width Variation on Hydraulic Performance of Arched Plan Stepped Spillways
Author
Abstract
Suggested Citation
DOI: 10.1007/s11269-022-03250-w
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Öznur Kocaer & Alpaslan Yarar, 2020. "Experimental and Numerical Investigation of Flow Over Ogee Spillway," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(13), pages 3949-3965, October.
- Elnaz Eghlidi & Gholam-Abbas Barani & Kourosh Qaderi, 2020. "Laboratory Investigation of Stilling Basin Slope Effect on Bed Scour at Downstream of Stepped Spillway: Physical Modeling of Javeh RCC Dam," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(1), pages 87-100, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Parastoo Parsamehr & Alban Kuriqi & Davoud Farsadizadeh & Ali Hosseinzadeh Dalir & Rasoul Daneshfaraz & Rui M. L. Ferreira, 2022. "Hydraulic jump over an adverse slope controlled by different roughness elements," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(14), pages 5729-5749, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Manish Pandey & Masoud Karbasi & Mehdi Jamei & Anurag Malik & Jaan H. Pu, 2023. "A Comprehensive Experimental and Computational Investigation on Estimation of Scour Depth at Bridge Abutment: Emerging Ensemble Intelligent Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(9), pages 3745-3767, July.
- Riddick Kakati & Vinay Chembolu & Subashisa Dutta, 2022. "Experimental and Numerical Investigation of Hybrid River Training Works using OpenFOAM," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(8), pages 2847-2863, June.
More about this item
Keywords
Curve axis; Energy dissipation; Hydraulic performance; Physical model; Stepped spillway;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:36:y:2022:i:11:d:10.1007_s11269-022-03250-w. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.