IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v34y2020i15d10.1007_s11269-020-02692-4.html
   My bibliography  Save this article

Can Groundwater Scenarios Be Predicted from Future Regional Climatic Input Variables?

Author

Listed:
  • Satiprasad Sahoo

    (Nalanda University)

  • Anirban Dhar

    (Indian Institute of Technology Kharagpur)

  • Anupam Debsarkar

    (Jadavpur University)

  • Amlanjyoti Kar

    (Central Ground Water Board)

Abstract

Conjunctive use of water is an integral part of water resources management. Future groundwater scenarios will dictate the water management policies. The present research focuses on future groundwater scenario generation based on regional scale CMIP5 data. The future scenarios for the years 2030, 2050 and 2080 were generated in terms of the groundwater potential zones (GWPZs) with seven futuristic parameters [land use and land cover, maximum temperature, minimum temperature, rainfall, groundwater recharge, groundwater table and evapotranspiration (ET)]. The Dyna-CLUE and MIROC5 were used for generation of the future change in climate and land use/land cover scenarios. The Soil and Water Assessment Tool (SWAT) was utilized for the recharge and ET estimation. Future groundwater heads were calculated by using the Modular Three-Dimensional Finite-Difference Groundwater Flow (MODFLOW). Bias corrected rainfall and temperature data of Representative Concentration Pathways (RCP 4.5) were utilized. Total twelve water quality parameters (pH, Cl−, Mg2+, F−, Na+, EC, TH, HCO3−, K+, Ca2+, SO42− and PO42−) were used for groundwater quality zone (GWQZ) mapping. These GWPZ and GWQZ were divided into three (poor potential, moderate potential, and good potential) and four zones (good quality, moderate quality, poor quality and above permissible limit) respectively. The lower part of the basin was identified as poor GWPZ (35.76% for 2030) and GWQZ due to an increase in urban areas. However, the middle and upstream portion covers good, moderate zones. Field-based soil moisture and groundwater level monitoring data were utilized for validation purposes. It was observed that groundwater level

Suggested Citation

  • Satiprasad Sahoo & Anirban Dhar & Anupam Debsarkar & Amlanjyoti Kar, 2020. "Can Groundwater Scenarios Be Predicted from Future Regional Climatic Input Variables?," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(15), pages 4815-4830, December.
  • Handle: RePEc:spr:waterr:v:34:y:2020:i:15:d:10.1007_s11269-020-02692-4
    DOI: 10.1007/s11269-020-02692-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-020-02692-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-020-02692-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. George Panagopoulos & George Bathrellos & Hariklia Skilodimou & Faini Martsouka, 2012. "Mapping Urban Water Demands Using Multi-Criteria Analysis and GIS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(5), pages 1347-1363, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pengfei Lin & Jinjun You & Hong Gan & Ling Jia, 2020. "Rule-Based Object-Oriented Water Resource System Simulation Model for Water Allocation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(10), pages 3183-3197, August.
    2. Nastaran Chitsaz & Ali Azarnivand, 2017. "Water Scarcity Management in Arid Regions Based on an Extended Multiple Criteria Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 233-250, January.
    3. José Sena & Marcos Freitas & Daniel Berrêdo & Lazaro Fernandes, 2012. "Evaluation of Vulnerability to Extreme Climatic Events in the Brazilian Amazonia: Methodological Proposal to the Rio Acre Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(15), pages 4553-4568, December.
    4. V. Chowdary & D. Chakraborthy & A. Jeyaram & Y. Murthy & J. Sharma & V. Dadhwal, 2013. "Multi-Criteria Decision Making Approach for Watershed Prioritization Using Analytic Hierarchy Process Technique and GIS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(10), pages 3555-3571, August.
    5. Sapfo Τsolaki-Fiaka & George D. Bathrellos & Hariklia D. Skilodimou, 2018. "Multi-Criteria Decision Analysis for an Abandoned Quarry in the Evros Region (NE Greece)," Land, MDPI, vol. 7(2), pages 1-16, April.
    6. Dimitrios E. Alexakis & George D. Bathrellos & Hariklia D. Skilodimou & Dimitra E. Gamvroula, 2021. "Spatial Distribution and Evaluation of Arsenic and Zinc Content in the Soil of a Karst Landscape," Sustainability, MDPI, vol. 13(12), pages 1-19, June.
    7. Juan Esquivel & Guillermo Morales & María Esteller, 2015. "Groundwater Monitoring Network Design Using GIS and Multicriteria Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3175-3194, July.
    8. Hariklia D. Skilodimou & George D. Bathrellos & Dimitrios E. Alexakis, 2021. "Flood Hazard Assessment Mapping in Burned and Urban Areas," Sustainability, MDPI, vol. 13(8), pages 1-16, April.
    9. J. Yazdi & A . Moridi, 2017. "Interactive Reservoir-Watershed Modeling Framework for Integrated Water Quality Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(7), pages 2105-2125, May.
    10. Izabela Rojek, 2014. "Models for Better Environmental Intelligent Management within Water Supply Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 3875-3890, September.
    11. Edward Gage & David Cooper, 2015. "The Influence of Land Cover, Vertical Structure, and Socioeconomic Factors on Outdoor Water Use in a Western US City," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3877-3890, August.
    12. Saeed Ghavidelfar & Asaad Y. Shamseldin & Bruce W. Melville, 2017. "A Multi-Scale Analysis of Single-Unit Housing Water Demand Through Integration of Water Consumption, Land Use and Demographic Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(7), pages 2173-2186, May.
    13. Yasser Minatour & Hossein Bonakdari & Zahra Shirmohammadi Aliakbarkhani, 2016. "Extension of Fuzzy Delphi AHP Based on Interval-Valued Fuzzy Sets and its Application in Water Resource Rating Problems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(9), pages 3123-3141, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:34:y:2020:i:15:d:10.1007_s11269-020-02692-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.