Comparative Study of Conventional and Computerized Reconstruction Techniques for Flow Time Series Data of Hydrometric Station
Author
Abstract
Suggested Citation
DOI: 10.1007/s11269-019-2203-x
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Mohamed Shenify & Amir Danesh & Milan Gocić & Ros Taher & Ainuddin Abdul Wahab & Abdullah Gani & Shahaboddin Shamshirband & Dalibor Petković, 2016.
"Precipitation Estimation Using Support Vector Machine with Discrete Wavelet Transform,"
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 641-652, January.
- Mohamed Shenify & Amir Seyed Danesh & Milan Gocić & Ros Surya Taher & Ainuddin Wahid Abdul Wahab & Abdullah Gani & Shahaboddin Shamshirband & Dalibor Petković, 2016. "Precipitation Estimation Using Support Vector Machine with Discrete Wavelet Transform," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 641-652, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Priyanka Sharma & Farshad Fathian & Deepesh Machiwal & S. R. Bhakar & Survey D. Sharma, 2024. "Comparison of Hybrid LSTAR-GARCH Model with Conventional Stochastic and Artificial-Intelligence Models to Estimate Monthly Streamflow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(10), pages 3685-3705, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ming Wei & Xue-yi You, 2022. "Monthly rainfall forecasting by a hybrid neural network of discrete wavelet transformation and deep learning," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 4003-4018, September.
- Saeid Mehdizadeh & Javad Behmanesh & Keivan Khalili, 2018. "New Approaches for Estimation of Monthly Rainfall Based on GEP-ARCH and ANN-ARCH Hybrid Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(2), pages 527-545, January.
- Liu, Jinhai & Su, Hanguang & Ma, Yanjuan & Wang, Gang & Wang, Yuan & Zhang, Kun, 2016. "Chaos characteristics and least squares support vector machines based online pipeline small leakages detection," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 656-669.
- Siriporn Supratid & Thannob Aribarg & Seree Supharatid, 2017. "An Integration of Stationary Wavelet Transform and Nonlinear Autoregressive Neural Network with Exogenous Input for Baseline and Future Forecasting of Reservoir Inflow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(12), pages 4023-4043, September.
- P. Biglarbeigi & W. A. Strong & D. Finlay & R. McDermott & P. Griffiths, 2020. "A Hybrid Model-Based Adaptive Framework for the Analysis of Climate Change Impact on Reservoir Performance," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(13), pages 4053-4066, October.
- Laleh Parviz & Kabir Rasouli & Ali Torabi Haghighi, 2023. "Improving Hybrid Models for Precipitation Forecasting by Combining Nonlinear Machine Learning Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(10), pages 3833-3855, August.
- Madjid Tavana & Salman Nazari-Shirkouhi & Amir Mashayekhi & Saeed Mousakhani, 2022. "An Integrated Data Mining Framework for Organizational Resilience Assessment and Quality Management Optimization in Trauma Centers," SN Operations Research Forum, Springer, vol. 3(1), pages 1-33, March.
More about this item
Keywords
Reconstruction; ARMAX; ARIMA; Missing data; Monthly flow; Support vector machine;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:33:y:2019:i:6:d:10.1007_s11269-019-2203-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.