IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v33y2019i6d10.1007_s11269-019-2203-x.html
   My bibliography  Save this article

Comparative Study of Conventional and Computerized Reconstruction Techniques for Flow Time Series Data of Hydrometric Station

Author

Listed:
  • Hamed Nozari

    (Bu-Ali Sina University)

  • Fateme Tavakoli

    (Bu-Ali Sina University)

  • Mohamad Mohamadi

    (Bu-Ali Sina University)

Abstract

One of the undeniable requirements in hydrological forecasting and water resources studies is the availability of reliable information. Due to the various reasons, time series data are not usually complete in those surveys, therefore; reconstruction techniques are highly required to complete the missing data. This research was undertaken to evaluate the efficiency of the computer-based methods namely artificial neural network, support vector machine, ARIMA, and ARMAX along with conventional reconstruction strategies of ratio analysis, Fragment, and Thomas-Fiering. As a case study, the monthly flow data of seven hydrometric stations in the Urmia Lake Basin were employed during a 15-year period. The results were then compared using the evaluation criteria of the correlation coefficient (R2), root mean square error (RMSE), standard deviation ratio (SDR), Nash-Sutcliffe efficiency (NSE), and standard error (SE). Based on key results, computerized methods had higher accuracy than conventional ones in data reconstruction. In terms of efficiency, among the computer-based methods, the support vector machine, ARMAX, artificial neural network, and ARIMA model were ranked from the first to fourth in missing data regeneration.

Suggested Citation

  • Hamed Nozari & Fateme Tavakoli & Mohamad Mohamadi, 2019. "Comparative Study of Conventional and Computerized Reconstruction Techniques for Flow Time Series Data of Hydrometric Station," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(6), pages 1913-1926, April.
  • Handle: RePEc:spr:waterr:v:33:y:2019:i:6:d:10.1007_s11269-019-2203-x
    DOI: 10.1007/s11269-019-2203-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-019-2203-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-019-2203-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohamed Shenify & Amir Danesh & Milan Gocić & Ros Taher & Ainuddin Abdul Wahab & Abdullah Gani & Shahaboddin Shamshirband & Dalibor Petković, 2016. "Precipitation Estimation Using Support Vector Machine with Discrete Wavelet Transform," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 641-652, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Priyanka Sharma & Farshad Fathian & Deepesh Machiwal & S. R. Bhakar & Survey D. Sharma, 2024. "Comparison of Hybrid LSTAR-GARCH Model with Conventional Stochastic and Artificial-Intelligence Models to Estimate Monthly Streamflow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(10), pages 3685-3705, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ming Wei & Xue-yi You, 2022. "Monthly rainfall forecasting by a hybrid neural network of discrete wavelet transformation and deep learning," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 4003-4018, September.
    2. Saeid Mehdizadeh & Javad Behmanesh & Keivan Khalili, 2018. "New Approaches for Estimation of Monthly Rainfall Based on GEP-ARCH and ANN-ARCH Hybrid Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(2), pages 527-545, January.
    3. Liu, Jinhai & Su, Hanguang & Ma, Yanjuan & Wang, Gang & Wang, Yuan & Zhang, Kun, 2016. "Chaos characteristics and least squares support vector machines based online pipeline small leakages detection," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 656-669.
    4. Siriporn Supratid & Thannob Aribarg & Seree Supharatid, 2017. "An Integration of Stationary Wavelet Transform and Nonlinear Autoregressive Neural Network with Exogenous Input for Baseline and Future Forecasting of Reservoir Inflow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(12), pages 4023-4043, September.
    5. P. Biglarbeigi & W. A. Strong & D. Finlay & R. McDermott & P. Griffiths, 2020. "A Hybrid Model-Based Adaptive Framework for the Analysis of Climate Change Impact on Reservoir Performance," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(13), pages 4053-4066, October.
    6. Laleh Parviz & Kabir Rasouli & Ali Torabi Haghighi, 2023. "Improving Hybrid Models for Precipitation Forecasting by Combining Nonlinear Machine Learning Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(10), pages 3833-3855, August.
    7. Madjid Tavana & Salman Nazari-Shirkouhi & Amir Mashayekhi & Saeed Mousakhani, 2022. "An Integrated Data Mining Framework for Organizational Resilience Assessment and Quality Management Optimization in Trauma Centers," SN Operations Research Forum, Springer, vol. 3(1), pages 1-33, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:33:y:2019:i:6:d:10.1007_s11269-019-2203-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.