IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v33y2019i5d10.1007_s11269-019-2200-0.html
   My bibliography  Save this article

Topography and Land Cover Effects on Snow Water Equivalent Estimation Using AMSR-E and GLDAS Data

Author

Listed:
  • Hadi Ansari

    (Bu-Ali Sina University)

  • Safar Marofi

    (Bu-Ali Sina University)

  • Mohamad Mohamadi

    (Bu-Ali Sina University)

Abstract

Accurate predictions of snow characteristics have an essential function in water resources management, especially in the high mountainous areas. Remote sensing presents a possibility for snow characteristics observation, such as snow water equivalent (SWE), in the large basins. Many studies are focused on the assessment of remote sensing product, especially global SWE data. However, regional effects such as topography, land cover, and meteorological conditions may lead to uncertainty in the estimation of the snow characteristics. In this research, the Advanced Microwave Scanning Radiometer-Eos (AMSR-E) data and the GLDAS model data (2006–2011) were used to estimate SWE in the northwest basins of Iran. The evaluation was performed by the root mean square error (RMSE) and percent bias (PBIAS) criteria. The results indicated a significant correlation (at 1% level) between the observed and estimated SWE data. According to the results, the estimation accuracy decreased with increasing altitude, land slope, and the normalized difference vegetation index (NDVI). The best estimation was detected at altitudes between 1350 and 1600 m. Generally, the SWE products of the AMSR-E and GLDAS data on the north-facing slope shows good accuracy in the SWE estimation compared to the other aspects.

Suggested Citation

  • Hadi Ansari & Safar Marofi & Mohamad Mohamadi, 2019. "Topography and Land Cover Effects on Snow Water Equivalent Estimation Using AMSR-E and GLDAS Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(5), pages 1699-1715, March.
  • Handle: RePEc:spr:waterr:v:33:y:2019:i:5:d:10.1007_s11269-019-2200-0
    DOI: 10.1007/s11269-019-2200-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-019-2200-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-019-2200-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Erhao Meng & Shengzhi Huang & Qiang Huang & Linyin Cheng & Wei Fang, 2021. "The Reconstruction and Extension of Terrestrial Water Storage Based on a Combined Prediction Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(15), pages 5291-5306, December.
    2. Arash Adib & Arash Zaerpour & Ozgur Kisi & Morteza Lotfirad, 2021. "A Rigorous Wavelet-Packet Transform to Retrieve Snow Depth from SSMIS Data and Evaluation of its Reliability by Uncertainty Parameters," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(9), pages 2723-2740, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:33:y:2019:i:5:d:10.1007_s11269-019-2200-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.