IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v33y2019i3d10.1007_s11269-018-2149-4.html
   My bibliography  Save this article

The Improvement in GWLF Model Simulation Performance in Watershed Hydrology by Changing the Transport Framework

Author

Listed:
  • Zuoda Qi

    (Nankai University)

  • Gelin Kang

    (Nankai University)

  • Minli Shen

    (Nankai University)

  • Yuqiu Wang

    (Nankai University)

  • Chunli Chu

    (Nankai University)

Abstract

The correct and reasonable delineation of actual hydrologic processes is a footstone for the effective simulation of pollutants in watershed models. In this study, a simple but comprehensive semidistributed modeling approach based on the generalized watershed loading function (GWLF) was modified to enable the accurate simulation of hydrology in watersheds. The frame of the original GWLF model (ORM), with a lumped hydrological parameter, was modified by adding channel routing processes, which made it possible to introduce the concept of subbasins. Then, the revised GWLF model was applied to the Luanhe watershed (30,000 km2) on a monthly bias in comparison with the ORM and the previously revised version. The sensitivity analysis and generalized likelihood uncertainty estimation (GLUE) uncertainty analysis were individually conducted to evaluate these modifications. Eventually, we compared four extreme conditions for the daily streamflow simulations of the three model versions in the Tunxi watershed but without calibration. All of the results indicated that the stability and accuracy of the model and the validity of the parameters were all enhanced and improved by the new revised version of the model, which provided reliable simulation results and indicated that it is a prospective tool to support watershed management.

Suggested Citation

  • Zuoda Qi & Gelin Kang & Minli Shen & Yuqiu Wang & Chunli Chu, 2019. "The Improvement in GWLF Model Simulation Performance in Watershed Hydrology by Changing the Transport Framework," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(3), pages 923-937, February.
  • Handle: RePEc:spr:waterr:v:33:y:2019:i:3:d:10.1007_s11269-018-2149-4
    DOI: 10.1007/s11269-018-2149-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-018-2149-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-018-2149-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Raymond Kim & Daniel Loucks & Jery Stedinger, 2012. "Artificial Neural Network Models of Watershed Nutrient Loading," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(10), pages 2781-2797, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jenq-Tzong Shiau & Hui-Ting Hsu, 2016. "Suitability of ANN-Based Daily Streamflow Extension Models: a Case Study of Gaoping River Basin, Taiwan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1499-1513, March.
    2. Xiao Pu & Hongguang Cheng & Lu Lu & Shengtian Yang & Jing Xie & Fanghua Hao, 2015. "Spatial Profiling and Assessing Dominance of Sources to Water Phosphorus Burden in a Shallow Lake," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(3), pages 715-729, February.
    3. Jenq-Tzong Shiau & Hui-Ting Hsu, 2016. "Suitability of ANN-Based Daily Streamflow Extension Models: a Case Study of Gaoping River Basin, Taiwan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1499-1513, March.
    4. Animesh Debnath & Mrinmoy Majumder & Manish Pal, 2015. "A Cognitive Approach in Selection of Source for Water Treatment Plant based on Climatic Impact," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 1907-1919, April.
    5. Vladimir Nikolic & Slobodan Simonovic & Dragan Milicevic, 2013. "Analytical Support for Integrated Water Resources Management: A New Method for Addressing Spatial and Temporal Variability," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(2), pages 401-417, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:33:y:2019:i:3:d:10.1007_s11269-018-2149-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.