IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v33y2019i1d10.1007_s11269-018-2100-8.html
   My bibliography  Save this article

Romanian River Basins Lag Time Analysis. The SCS-CN Versus RNS Comparative Approach Developed for Small Watersheds

Author

Listed:
  • Mihai Voda

    (Dimitrie Cantemir University)

  • Constantin Adrian Sarpe

    (Romanian National Waters Administration)

  • Anna Izabella Voda

    (Romanian National Waters Administration)

Abstract

Romanian policy makers have to perceive that human intervention on river basins land cover is influencing rainfall-runoff relation and the used methodology cannot accurately estimate watershed surface flow transformations. Global water cycles and energy fluxes understanding is leading to better predictions of land atmosphere interaction and local hydro-climates evolution. The water transfer time determination from rainfall to runoff needs accurate measurements of river basins hydrological parameters. Here, we analyzed and compared the lag time value results of two different methodologies (curve number and rational methodology) used for 54 Romanian small catchment areas study. The focus of this paper is the lag time evaluation and interpretation for an effective implementation of the best methodology approach in the Romanian geographical space. Our research in small river basins was developed using remote sensing technology maps, GIS and environmental datasets in combination with field work on every drainage basin in order to assess the specific morphological features and validate the land cover typology. We found that Soil Conservation Service - Curve Number (SCS-CN) method is widely used according to USA landscape features classification, but not necessarily applicable to Romanian river basins characteristics. Our results show how the official Romanian rational methodology national standard (RNS) can be improved and the limits of SCS-CN method.

Suggested Citation

  • Mihai Voda & Constantin Adrian Sarpe & Anna Izabella Voda, 2019. "Romanian River Basins Lag Time Analysis. The SCS-CN Versus RNS Comparative Approach Developed for Small Watersheds," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(1), pages 245-259, January.
  • Handle: RePEc:spr:waterr:v:33:y:2019:i:1:d:10.1007_s11269-018-2100-8
    DOI: 10.1007/s11269-018-2100-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-018-2100-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-018-2100-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ravindra Kumar Verma & Sangeeta Verma & Surendra Kumar Mishra & Ashish Pandey, 2021. "SCS-CN-Based Improved Models for Direct Surface Runoff Estimation from Large Rainfall Events," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(7), pages 2149-2175, May.
    2. Abazar Fathi & Masih Zolghadr, 2024. "A Novel Method for Estimating Time of Concentration in Ungauged Catchments," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(11), pages 4003-4018, September.
    3. Esmatullah Sangin & S. K. Mishra & Pravin R. Patil, 2024. "Analogy Between SCS-CN and Muskingum Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(1), pages 153-171, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:33:y:2019:i:1:d:10.1007_s11269-018-2100-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.