IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v33y2019i10d10.1007_s11269-019-02324-6.html
   My bibliography  Save this article

Transient-state Analytical Solution for Arbitrarily-Located Multiwells in Triangular-Shaped Unconfined Aquifer

Author

Listed:
  • Ali Mahdavi

    (Arak University)

Abstract

This work presents an analytical solution for the linearized Boussinesq equation describing the nature of well hydraulics in equilateral triangular-shaped unconfined aquifer. This homogeneous, isotropic, fully-saturated porous media is hydraulically connected to three surrounding streams of constant-head. The solution enables modeling aquifer response to a system of arbitrarily-located, fully-penetrating multiwells (injection, extraction or combination of both), each characterized by stepwise time-varying rate. First, a fundamental solution is provided for multiwell-induced head distribution in an infinite aquifer domain. Image well theory is then efficiently implemented to create an equivalent flow field for the intended domain. Spatiotemporal head distribution is obtained in the form of fivefold series involving exponential integrals. Expressions are also derived to quantify stream depletion rates caused by a single pumping well, under both transient and steady-state conditions. As a hypothetical example, an aquifer remediation scheme is planned by combining two extraction wells with an injection one. The computed head profiles reveal strictly close agreement with numerical results obtained by finite element method. Sensitivity map for stream depletion rate is also discussed. The present results are found to exactly reproduce those available for the wedge-shaped domain, under certain geometric constraint. Finally, the solution is extended to the case of hemi-equilateral triangular-shaped aquifer with or without an impervious boundary line.

Suggested Citation

  • Ali Mahdavi, 2019. "Transient-state Analytical Solution for Arbitrarily-Located Multiwells in Triangular-Shaped Unconfined Aquifer," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(10), pages 3615-3631, August.
  • Handle: RePEc:spr:waterr:v:33:y:2019:i:10:d:10.1007_s11269-019-02324-6
    DOI: 10.1007/s11269-019-02324-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-019-02324-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-019-02324-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ali Mahdavi & Hamid Seyyedian, 2013. "Transient-State Analytical Solution for Groundwater Recharge in Triangular-Shaped Aquifers Using the Concept of Expanded Domain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 2785-2806, June.
    2. Ali Mahdavi, 2019. "Response of Triangular-Shaped Leaky Aquifers to Rainfall-Induced Groundwater Recharge: an Analytical Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(6), pages 2153-2173, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali Mahdavi, 2015. "Transient-State Analytical Solution for Groundwater Recharge in Anisotropic Sloping Aquifer," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3735-3748, August.
    2. Iraj Saeedpanah & Ramin Golmohamadi Azar, 2017. "New Analytical Expressions for Two-Dimensional Aquifer Adjoining with Streams of Varying Water Level," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 403-424, January.
    3. Ali Mahdavi, 2019. "Response of Triangular-Shaped Leaky Aquifers to Rainfall-Induced Groundwater Recharge: an Analytical Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(6), pages 2153-2173, April.
    4. Kudzai Chipongo & Mehdi Khiadani, 2015. "Comparison of Simulation Methods for Recharge Mounds Under Rectangular Basins," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2855-2874, June.
    5. Masoomeh Zeinali & Arash Azari & Mohammad Mehdi Heidari, 2020. "Simulating Unsaturated Zone of Soil for Estimating the Recharge Rate and Flow Exchange Between a River and an Aquifer," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(1), pages 425-443, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:33:y:2019:i:10:d:10.1007_s11269-019-02324-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.