IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v32y2018i6d10.1007_s11269-017-1887-z.html
   My bibliography  Save this article

Optimal Selection of Predictor Variables in Statistical Downscaling Models of Precipitation

Author

Listed:
  • Ramesh S. V. Teegavarapu

    (Florida Atlantic University)

  • Aneesh Goly

    (Florida Atlantic University)

Abstract

Two screening methods aimed at selection of predictor variables for use in a statistical downscaling (SD) model developed for precipitation are proposed and evaluated in this study. The SD model developed in this study relies heavily on appropriate predictors chosen and accurate relationships between site-specific predictand (i.e. precipitation) and general circulation model (GCM)-scale predictors for providing future projections at different spatial and temporal scales. Methods to characterize these relationships via rigid and flexible functional forms of relationships using mixed integer nonlinear programming (MINLP) formulation with binary variables, and artificial neural network (ANN) methods respectively are developed and evaluated in this study. The proposed methods and three additional methods based on the correlations between predictors and predictand, stepwise regression (SWR) and principal component analysis (PCA) are evaluated in this study. The screening methods are evaluated by employing them in conjunction with an SD model at 22 rain gauge locations in south Florida, USA. The predictor variables that are selected by different predictor selection methods are used in a statistical downscaling model developed in this study to downscale precipitation at a monthly temporal scale. Results suggest that optimal selection of variables using MINLP and ANN provided improved performance and error measures compared to two other models that did not use these methods for screening the variables. Results from application and evaluations of screening methods indicate improved downscaling of precipitation is possible by SD models when an optimal set of predictors are used and the selection of the predictors is site-specific.

Suggested Citation

  • Ramesh S. V. Teegavarapu & Aneesh Goly, 2018. "Optimal Selection of Predictor Variables in Statistical Downscaling Models of Precipitation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(6), pages 1969-1992, April.
  • Handle: RePEc:spr:waterr:v:32:y:2018:i:6:d:10.1007_s11269-017-1887-z
    DOI: 10.1007/s11269-017-1887-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-017-1887-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-017-1887-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmad Jafarzadeh & Mohsen Pourreza-Bilondi & Abbas Khashei Siuki & Javad Ramezani Moghadam, 2021. "Examination of Various Feature Selection Approaches for Daily Precipitation Downscaling in Different Climates," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(2), pages 407-427, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:32:y:2018:i:6:d:10.1007_s11269-017-1887-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.