IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v32y2018i13d10.1007_s11269-018-2053-y.html
   My bibliography  Save this article

Incorporating Influences of Shallow Groundwater Conditions in Curve Number-Based Runoff Estimation Methods

Author

Listed:
  • Ramesh S. V. Teegavarapu

    (Florida Atlantic University)

  • Singaiah Chinatalapudi

    (Florida Atlantic University)

Abstract

Runoff generation process in any watershed is mainly affected by precipitation, land use and land cover, existing soil moisture conditions and losses. Shallow groundwater table conditions that occur in many regions are known to affect the soil moisture retention capacity, infiltration and ultimately the runoff. A methodology that links soil moisture capacity to the shallow groundwater table or High-Water Table (HWT) using a nonlinear functional relationship within a curve number (CN)-based runoff estimation method, is proposed and investigated using single and continuous event simulation models in this study. The relationship is used to obtain an adjusted CN that incorporates the effect of change in soil moisture conditions due to HWT. The CN defined for average conditions is replaced by this adjusted CN and is used for runoff estimation. A single event model that uses Soil Conservation Service (SCS) CN approach is used for evaluation of variations in runoff depths and peak discharges based on different HWT conditions. A real-life case study from central Florida region in the USA was adopted for application and evaluation of the proposed methodology. Results from the case study application of the models indicate that HWT conditions significantly influence the magnitudes of peak discharge by as much as 43% and runoff depth by 48% as the water table height reaches the land surface. The magnitudes of increases in peak discharges are specific to case study region and are dependent on the functional form of the relationship linking HWT and soil storage capacity. Also, for specific values of HWT, an equivalency between HWT-based CN and wet antecedent moisture condition (AMC)-based CN can be established.

Suggested Citation

  • Ramesh S. V. Teegavarapu & Singaiah Chinatalapudi, 2018. "Incorporating Influences of Shallow Groundwater Conditions in Curve Number-Based Runoff Estimation Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(13), pages 4313-4327, October.
  • Handle: RePEc:spr:waterr:v:32:y:2018:i:13:d:10.1007_s11269-018-2053-y
    DOI: 10.1007/s11269-018-2053-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-018-2053-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-018-2053-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. Mishra & R. Pandey & M. Jain & Vijay Singh, 2008. "A Rain Duration and Modified AMC-dependent SCS-CN Procedure for Long Duration Rainfall-runoff Events," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(7), pages 861-876, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. I. Argyrokastritis & G. Kargas & P. Kerkides, 2009. "Simulation of Soil Moisture Profiles Using K(h) from Coupling Experimental Retention Curves and One-Step Outflow Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(15), pages 3255-3266, December.
    2. Xianhong Meng & Min Zhang & Jiahong Wen & Shiqiang Du & Hui Xu & Luyang Wang & Yan Yang, 2019. "A Simple GIS-Based Model for Urban Rainstorm Inundation Simulation," Sustainability, MDPI, vol. 11(10), pages 1-19, May.
    3. Napoli, Marco & Cecchi, Stefano & Orlandini, Simone & Zanchi, Camillo A., 2014. "Determining potential rainwater harvesting sites using a continuous runoff potential accounting procedure and GIS techniques in central Italy," Agricultural Water Management, Elsevier, vol. 141(C), pages 55-65.
    4. Ajaykumar Kadam & Sanjay Kale & Nagesh Pande & N. Pawar & R. Sankhua, 2012. "Identifying Potential Rainwater Harvesting Sites of a Semi-arid, Basaltic Region of Western India, Using SCS-CN Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(9), pages 2537-2554, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:32:y:2018:i:13:d:10.1007_s11269-018-2053-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.