IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v31y2017i5d10.1007_s11269-017-1593-x.html
   My bibliography  Save this article

Development of a Simulation Model for Estimation of Potential Recharge in a Semi-arid Foothill Region

Author

Listed:
  • Seyed Adib Banimahd

    (Shiraz University)

  • Davar Khalili

    (Shiraz University)

  • Shahrokh Zand-Parsa

    (Shiraz University)

  • Ali Akbar Kamgar-Haghighi

    (Shiraz University)

Abstract

The SMPR (Soil Moisture and Potential Recharge) model is developed to simulate soil moisture content and potential recharge under semi-arid conditions. In SMPR model, infiltration and soil moisture redistribution follow two successive stages. In stage (I), precipitation infiltrates and is distributed into the soil profile utilizing the soil moisture accounting fashion and in stage (II), moisture is redistributed using simplified Richards’ equation (neglecting matric-potential gradient). Liquid and vapor evaporation from bare soil are estimated based on Dual-Crop methodology [Ke and optimized Kcb (0.17)]. Two commonly applied unsaturated hydraulic conductivity functions [K(θ)] of B-C (Brooks and Corey) and V-G (van-Genuchten); and an Empirical Exponential (E-E) equation are locally calibrated and used for potential recharge estimation (as main simulation objective). Model performance (calibration/validation) is based on reasonable estimation of potential recharge and acceptable simulation of soil moisture, considering local lysimeter data. According to results, B-C, V-G an E-E equations produced acceptable simulation of soil moisture content (NRMSE

Suggested Citation

  • Seyed Adib Banimahd & Davar Khalili & Shahrokh Zand-Parsa & Ali Akbar Kamgar-Haghighi, 2017. "Development of a Simulation Model for Estimation of Potential Recharge in a Semi-arid Foothill Region," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(5), pages 1535-1556, March.
  • Handle: RePEc:spr:waterr:v:31:y:2017:i:5:d:10.1007_s11269-017-1593-x
    DOI: 10.1007/s11269-017-1593-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-017-1593-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-017-1593-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Banimahd, S.A. & Zand-Parsa, Sh., 2013. "Simulation of evaporation, coupled liquid water, water vapor and heat transport through the soil medium," Agricultural Water Management, Elsevier, vol. 130(C), pages 168-177.
    2. Sh. Zand-Parsa & A. Majnooni-Heris & A.R. Sepaskhah & M. J. Nazemosadat, 2011. "Modification of Angstrom Model for Estimation of Global Solar Radiation in an Intermountain Region of Southern Iran," Energy & Environment, , vol. 22(7), pages 911-924, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fabio V. Difonzo & Costantino Masciopinto & Michele Vurro & Marco Berardi, 2021. "Shooting the Numerical Solution of Moisture Flow Equation with Root Water Uptake Models: A Python Tool," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(8), pages 2553-2567, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carlos E. Villarreal-Olavarrieta & Néstor García-Chan & Miguel E. Vázquez-Méndez, 2021. "Simulation of Heat and Water Transport on Different Tree Canopies: A Finite Element Approach," Mathematics, MDPI, vol. 9(19), pages 1-20, September.
    2. Halawa, Edward & GhaffarianHoseini, AmirHosein & Hin Wa Li, Danny, 2014. "Empirical correlations as a means for estimating monthly average daily global radiation: A critical overview," Renewable Energy, Elsevier, vol. 72(C), pages 149-153.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:31:y:2017:i:5:d:10.1007_s11269-017-1593-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.