IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v31y2017i12d10.1007_s11269-017-1719-1.html
   My bibliography  Save this article

A Genetic Programming Approach to System Identification of Rainfall-Runoff Models

Author

Listed:
  • Jayashree Chadalawada

    (National University of Singapore)

  • Vojtech Havlicek

    (Czech University of Life Sciences Prague)

  • Vladan Babovic

    (National University of Singapore)

Abstract

Advancements in data acquisition, storage and retrieval are progressing at an extraordinary rate, whereas the same in the field of knowledge extraction from data is yet to be accomplished. The challenges associated with hydrological datasets, including complexity, non-linearity and multicollinearity, motivate the use of machine learning to build hydrological models. Increasing global climate change and urbanization call for better understanding of altered rainfall-runoff processes. There is a requirement that models are intelligible estimates of underlying physics, coupling explanatory and predictive components, maintaining parsimony and accuracy. Genetic Programming, an evolutionary computation technique has been used for short-term prediction and forecast in the field of hydrology. Advancing data science in hydrology can be achieved by tapping the full potential of GP in defining an evolutionary flexible modelling framework that balances prior information, simulation accuracy and strategy for future uncertainty. As a preliminary step, GP is used in conjunction with a conceptual rainfall-runoff model to solve model configuration problem. Two datasets belonging to a tropical catchment of Singapore and a temperate catchment of South Island, New Zealand with contrasting characteristics are analyzed in this study. The results indicate that proposed approach successfully combines the merits of evolutionary algorithm and conceptual knowledge in the generation of optimal model structure and associated parameters to capture runoff dynamics of catchments.

Suggested Citation

  • Jayashree Chadalawada & Vojtech Havlicek & Vladan Babovic, 2017. "A Genetic Programming Approach to System Identification of Rainfall-Runoff Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(12), pages 3975-3992, September.
  • Handle: RePEc:spr:waterr:v:31:y:2017:i:12:d:10.1007_s11269-017-1719-1
    DOI: 10.1007/s11269-017-1719-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-017-1719-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-017-1719-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tonglin Fu & Xinrong Li, 2020. "A Combination Forecasting Strategy for Precipitation, Temperature and Wind Speed in the Southeastern Margin of the Tengger Desert," Sustainability, MDPI, vol. 12(4), pages 1-22, February.
    2. Lamine Diop & Saeed Samadianfard & Ansoumana Bodian & Zaher Mundher Yaseen & Mohammad Ali Ghorbani & Hana Salimi, 2020. "Annual Rainfall Forecasting Using Hybrid Artificial Intelligence Model: Integration of Multilayer Perceptron with Whale Optimization Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(2), pages 733-746, January.
    3. Kai Lun Chong & Sai Hin Lai & Yu Yao & Ali Najah Ahmed & Wan Zurina Wan Jaafar & Ahmed El-Shafie, 2020. "Performance Enhancement Model for Rainfall Forecasting Utilizing Integrated Wavelet-Convolutional Neural Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(8), pages 2371-2387, June.
    4. Dereje Birhanu & Hyeonjun Kim & Cheolhee Jang & Sanghyun Park, 2018. "Does the Complexity of Evapotranspiration and Hydrological Models Enhance Robustness?," Sustainability, MDPI, vol. 10(8), pages 1-34, August.
    5. Suning Liu & Haiyun Shi, 2019. "A Recursive Approach to Long-Term Prediction of Monthly Precipitation Using Genetic Programming," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(3), pages 1103-1121, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:31:y:2017:i:12:d:10.1007_s11269-017-1719-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.