IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v31y2017i11d10.1007_s11269-017-1686-6.html
   My bibliography  Save this article

A Deterministic Algorithm for Determination of Optimal Water Quality Monitoring Stations

Author

Listed:
  • Mahmoud Saleh Al- Khafaji

    (University of Technology)

  • Zahraa Abdulhussain Abdulraheem

    (Center for Restoration of Iraqi Marshes and Wetlands, Ministry of Water Resources)

Abstract

Water quality monitoring networks are usually designed according to statistical approaches and general criteria without a consistent or logical deterministic design strategy. In this research, a deterministic approach for allocating the most sensitive water quality monitoring stations was proposed. This approach was applied on the western part of the Al-Hammar Marsh. Two-dimensional hydrodynamic and water quality simulation models were used to estimate the distribution of total dissolved solids (TDS) within the marsh for all of the expected conditions. Subsequently, the spatial distribution of the variance of TDS was computed based on the results of these models and performed in a Geographic Information System (GIS) database layer. The standard acceptable TDS variation limits of ±5%, land-use map, land-cover map and other main selection criteria of the monitoring stations were set as constraints via GIS database layers. These layers were integrally applied to the variance layer to obtain the locations of the most sensitive monitoring stations. It was concluded that, the most representative monitoring network consists of 46 stations. This number can be reduced to 37 and 29 stations by increasing the acceptable TDS variation limits to ±10% and 15%, respectively. The developed approach can be used with limited data. Moreover, it can be applied to rivers, lakes or wetlands, considering all of the related constraints. In addition, the GIS database can be easily updated and analysed. These features are not available in other methods such as the Sanders method, multiple criteria decision making and dynamic programming approach.

Suggested Citation

  • Mahmoud Saleh Al- Khafaji & Zahraa Abdulhussain Abdulraheem, 2017. "A Deterministic Algorithm for Determination of Optimal Water Quality Monitoring Stations," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(11), pages 3575-3592, September.
  • Handle: RePEc:spr:waterr:v:31:y:2017:i:11:d:10.1007_s11269-017-1686-6
    DOI: 10.1007/s11269-017-1686-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-017-1686-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-017-1686-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alvarez-Vázquez, L.J. & Martínez, A. & Vázquez-Méndez, M.E. & Vilar, M.A., 2006. "Optimal location of sampling points for river pollution control," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 71(2), pages 149-160.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Destandau François & Zaiter Youssef, 2020. "Optimizing the water quality monitoring network by maximizing the economic value of information," Post-Print hal-03373506, HAL.
    2. Destandau François & Zaiter Youssef, 2020. "Spatio-Temporal Design for a Water Quality Monitoring Network Maximizing the Economic Value of Information to optimize the detection of accidental pollution," Post-Print hal-03373487, HAL.
    3. François Destandau & Youssef Zaiter, 2020. "Optimisation « économique » vs « physique » des réseaux de surveillance de la qualité de l'eau," Post-Print hal-03373478, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:31:y:2017:i:11:d:10.1007_s11269-017-1686-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.