IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v30y2016i3d10.1007_s11269-015-1205-6.html
   My bibliography  Save this article

Outdoor Water Use as an Adaptation Problem: Insights from North American Cities

Author

Listed:
  • Patricia Gober

    (Arizona State University
    Arizona State University)

  • Ray Quay

    (Arizona State University)

  • Kelli L. Larson

    (Arizona State University
    Arizona State University
    Arizona State University)

Abstract

Recent efforts to influence the efficiency and timing of urban indoor water use through education, technology, conservation, reuse, economic incentives, and regulatory mechanisms have enabled many North American cities to accommodate population growth and buffer impacts of drought. It is unlikely that this approach will be equally successful into the future because the source of conservation will shift from indoor to outdoor use. Outdoor water is climate sensitive, difficult to measure, hard to predict, linked to other components of complex and dynamic urban resource systems, imbued with behavioral and cultural dimensions, and implicated in societal conflicts about climate risk, modern lifestyles, social justice, and future growth. Outdoor water conservation is not a traditional management problem focused on the water sector, assuming a stationary climate, and set aside from public debate. Instead, outdoor water is an adaptation problem, involving complex and uncertain system dynamics, the need for cross-sector coordination, strategies for dealing with climatic uncertainty, and mechanisms for engaging stakeholders with differing goals. This paper makes the case for treating outdoor water as an adaptation problem and offers a six-point strategy for how cities can better prepare their water systems for the uncertainties of climate and societal change.

Suggested Citation

  • Patricia Gober & Ray Quay & Kelli L. Larson, 2016. "Outdoor Water Use as an Adaptation Problem: Insights from North American Cities," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(3), pages 899-912, February.
  • Handle: RePEc:spr:waterr:v:30:y:2016:i:3:d:10.1007_s11269-015-1205-6
    DOI: 10.1007/s11269-015-1205-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-015-1205-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-015-1205-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrew C. Worthington & Mark Hoffman, 2008. "An Empirical Survey Of Residential Water Demand Modelling," Journal of Economic Surveys, Wiley Blackwell, vol. 22(5), pages 842-871, December.
    2. Ines Winz & Gary Brierley & Sam Trowsdale, 2009. "The Use of System Dynamics Simulation in Water Resources Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(7), pages 1301-1323, May.
    3. Ronald Brunner, 2010. "Adaptive governance as a reform strategy," Policy Sciences, Springer;Society of Policy Sciences, vol. 43(4), pages 301-341, December.
    4. Julie A. Hewitt & W. Michael Hanemann, 1995. "A Discrete/Continuous Choice Approach to Residential Water Demand under Block Rate Pricing," Land Economics, University of Wisconsin Press, vol. 71(2), pages 173-192.
    5. Elizabeth Wentz & Patricia Gober, 2007. "Determinants of Small-Area Water Consumption for the City of Phoenix, Arizona," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(11), pages 1849-1863, November.
    6. Patricia Gober & Anthony Brazel & Ray Quay & Soe Myint & Susanne Grossman-Clarke & Adam Miller & Steve Rossi, 2010. "Using Watered Landscapes to Manipulate Urban Heat Island Effects: How Much Water Will It Take to Cool Phoenix?," Journal of the American Planning Association, Taylor & Francis Journals, vol. 76(1), pages 109-121.
    7. Joshua K. Abbott & H. Allen Klaiber & V. Kerry Smith, 2015. "Economic Behavior, Market Signals, and Urban Ecology," NBER Working Papers 20959, National Bureau of Economic Research, Inc.
    8. Olmstead, Sheila M. & Michael Hanemann, W. & Stavins, Robert N., 2007. "Water demand under alternative price structures," Journal of Environmental Economics and Management, Elsevier, vol. 54(2), pages 181-198, September.
    9. Harlan, Sharon L. & Brazel, Anthony J. & Prashad, Lela & Stefanov, William L. & Larsen, Larissa, 2006. "Neighborhood microclimates and vulnerability to heat stress," Social Science & Medicine, Elsevier, vol. 63(11), pages 2847-2863, December.
    10. repec:asg:wpaper:1036 is not listed on IDEAS
    11. Sorada Tapsuwan & Michael Burton & Aditi Mankad & David Tucker & Murni Greenhill, 2014. "Adapting to Less Water: Household Willingness to Pay for Decentralised Water Systems in Urban Australia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(4), pages 1111-1125, March.
    12. Duke, Joshua M. & Ehemann, Robert W. & Mackenzie, John, 2002. "The Distributional Effects of Water Quantity Management Strategies: A Spatial Analysis," The Review of Regional Studies, Southern Regional Science Association, vol. 32(1), pages 19-35, Winter/Sp.
    13. Leonie Pearson & Anthea Coggan & Wendy Proctor & Timothy Smith, 2010. "A Sustainable Decision Support Framework for Urban Water Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(2), pages 363-376, January.
    14. Edward Gage & David Cooper, 2015. "The Influence of Land Cover, Vertical Structure, and Socioeconomic Factors on Outdoor Water Use in a Western US City," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3877-3890, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiangwen Kong & Chengyan Yue & Eric Watkins & Mike Barnes & Yufeng Lai, 2023. "Investigating the Effectiveness of Irrigation Restriction Length on Water Use Behavior," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(1), pages 251-268, January.
    2. Md Nadiruzzaman & Jürgen Scheffran & Hosna J. Shewly & Stefanie Kley, 2022. "Conflict-Sensitive Climate Change Adaptation: A Review," Sustainability, MDPI, vol. 14(13), pages 1-12, July.
    3. L. Haak & K. Pagilla, 2020. "The Water-Economy Nexus: a Composite Index Approach to Evaluate Urban Water Vulnerability," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(1), pages 409-423, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mónica Maldonado-Devis & Vicent Almenar-Llongo, 2021. "A Panel Data Estimation of Domestic Water Demand with IRT Tariff Structure: The Case of the City of Valencia (Spain)," Sustainability, MDPI, vol. 13(3), pages 1-26, January.
    2. Michael O'Donnell & Robert P. Berrens, 2018. "Understanding Falling Municipal Water Demand in a Small City Dependent on the Declining Ogallala Aquifer: Case Study of Clovis, New Mexico," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 4(04), pages 1-40, October.
    3. Acuña, Guillermo, 2017. "Elasticidades de la demanda de agua en Chile [Elasticities of water demand in Chile]," MPRA Paper 82916, University Library of Munich, Germany.
    4. Teresa Torregrosa & Martín Sevilla & Borja Montaño & Victoria López-Vico, 2010. "The Integrated Management of Water Resources in Marina Baja (Alicante, Spain). A Simultaneous Equation Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(14), pages 3799-3815, November.
    5. Shyama Ratnasiri & Clevo Wilson & Wasantha Athukorala & Maria A. Garcia-Valiñas & Benno Torgler & Robert Gifford, 2018. "Effectiveness of two pricing structures on urban water use and conservation: a quasi-experimental investigation," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 20(3), pages 547-560, July.
    6. Darío F. Jiménez & Sergio A. Orrego & Felipe A. Vásquez & Roberto D. Ponce, 2017. "Estimating water demand for urban residential use using a discrete-continuous model and disaggregated data at the household level: the case of the city of Manizales, Colombia," Lecturas de Economía, Universidad de Antioquia, Departamento de Economía, issue 86, pages 153-178, Enero - J.
    7. Yarela Flores Arévalo & Roberto D. Ponce Oliva & Francisco J. Fernández & Felipe Vásquez-Lavin, 2021. "Sensitivity of Water Price Elasticity Estimates to Different Data Aggregation Levels," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(6), pages 2039-2052, April.
    8. Daniel A. Brent, 2016. "Estimating Water Demand Elasticity at the Intensive and Extensive Margin," Departmental Working Papers 2016-06, Department of Economics, Louisiana State University.
    9. Jiménez, Darío F. & Orrego, Sergio A. & Vásquez, Felipe A. & Ponce, Roberto D., 2016. "Estimación de la demanda de agua para uso residencial urbano usando un modelo discreto-continuo y datos desagregados a nivel de hogar: el caso de la ciudad de Manizales, Colombia," Revista Lecturas de Economía, Universidad de Antioquia, CIE, issue 86, pages 153-178, December.
    10. Liang Lu & David Deller & Morten Hviid, 2019. "Price and Behavioural Signals to Encourage Household Water Conservation: Implications for the UK," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(2), pages 475-491, January.
    11. Diego Maria André & José Carvalho, 2014. "Spatial Determinants of Urban Residential Water Demand in Fortaleza, Brazil," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(9), pages 2401-2414, July.
    12. Guillermo Ignacio Acuña & Cristián Echeverría & Alex Godoy & Felipe Vásquez, 2020. "The role of climate variability in convergence of residential water consumption across Chilean localities," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 22(1), pages 89-108, January.
    13. Milan Ščasný & Šarlota Smutná, 2021. "Estimation of price and income elasticity of residential water demand in the Czech Republic over three decades," Journal of Consumer Affairs, Wiley Blackwell, vol. 55(2), pages 580-608, June.
    14. Liang Lu & David Deller & Morten Hviid, 2018. "Price and Behavioural Signals to Encourage Household Water Conservation in Temperate Climates," Working Paper series, University of East Anglia, Centre for Competition Policy (CCP) 2018-01, Centre for Competition Policy, University of East Anglia, Norwich, UK..
    15. María Ángeles García-Valiñas & Sara Suárez-Fernández, 2022. "Are Economic Tools Useful to Manage Residential Water Demand? A Review of Old Issues and Emerging Topics," Post-Print hal-04067487, HAL.
    16. Ming-Feng Hung & Bin-Tzong Chie, 2013. "Residential Water Use: Efficiency, Affordability, and Price Elasticity," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(1), pages 275-291, January.
    17. Ming-Feng Hung & Bin-Tzong Chie & Tai-Hsin Huang, 2017. "Residential water demand and water waste in Taiwan," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 19(2), pages 249-268, April.
    18. Daminato, Claudio & Diaz-Farina, Eugenio & Filippini, Massimo & Padrón-Fumero, Noemi, 2021. "The impact of smart meters on residential water consumption: Evidence from a natural experiment in the Canary Islands," Resource and Energy Economics, Elsevier, vol. 64(C).
    19. Koji Miyawaki & Yasuhiro Omori & Akira Hibiki, 2018. "A discrete/continuous choice model on a nonconvex budget set," Econometric Reviews, Taylor & Francis Journals, vol. 37(2), pages 89-113, February.
    20. -, 2015. "La economía del cambio climático en América Latina y el Caribe: paradojas y desafíos del desarrollo sostenible," Libros y Documentos Institucionales, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL), number 37310 edited by Cepal, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:30:y:2016:i:3:d:10.1007_s11269-015-1205-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.