IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v27y2013i3p665-693.html
   My bibliography  Save this article

Effectiveness and Efficiency of Scheduling Regional Water Resources Projects

Author

Listed:
  • Frederick Chou
  • Hao-Chih Lee
  • William Yeh

Abstract

The regional water resources planning contains a variety of proposed projects. Precisely estimating the regional system yield could be difficult. Incorrectly computed system yield will cause the scheduling strategy to be not correctly screened. This research imbedded a combined regional simulation-optimization model, namely Generalized Water Allocation Simulation Model (GWASIM), for evaluating system yield in binary dynamic programming (DP) analysis as a scheduling model to determine the optimal development strategy of the master plan of a regional water supply system. To achieve a complete scheduling analysis, this paper investigated: (1) applying GWASIM to effectively and efficiently determine the precise system yields of many different combinations of proposed projects while meeting design criteria of acceptable shortage; (2) solving a non-pure sequencing problem with a DP based scheduling model since some projects may not be necessarily developed, or even no feasible combination of proposed projects can meet the demand; (3) clarifying the amortized construction cost to be accounted in economic analysis if the economic life of a project exceeds the scheduling horizon. In addition, the computation efficiencies of scheduling analysis and system yield analysis, which are significantly improved with DP and simulation-optimization model respectively, are discussed in the paper. This study devised the master plan of the Jilong river system in northern Taiwan as an example. The optimal scheduling strategy of minimum developing cost was precisely determined. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • Frederick Chou & Hao-Chih Lee & William Yeh, 2013. "Effectiveness and Efficiency of Scheduling Regional Water Resources Projects," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(3), pages 665-693, February.
  • Handle: RePEc:spr:waterr:v:27:y:2013:i:3:p:665-693
    DOI: 10.1007/s11269-012-0208-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-012-0208-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-012-0208-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rahim Quazi, 2001. "Strategic Water Resources Planning: A Case Study of Bangladesh," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 15(3), pages 165-186, June.
    2. Donald Erlenkotter, 1973. "Sequencing Expansion Projects," Operations Research, INFORMS, vol. 21(2), pages 542-553, April.
    3. Hanan Luss, 1982. "Operations Research and Capacity Expansion Problems: A Survey," Operations Research, INFORMS, vol. 30(5), pages 907-947, October.
    4. D. Haro & J. Paredes & A. Solera & J. Andreu, 2012. "A Model for Solving the Optimal Water Allocation Problem in River Basins with Network Flow Programming When Introducing Non-Linearities," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(14), pages 4059-4071, November.
    5. B. Luo & I. Maqsood & G. Huang, 2007. "Planning water resources systems with interval stochastic dynamic programming," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(6), pages 997-1014, June.
    6. Deepti Rani & Maria Moreira, 2010. "Simulation–Optimization Modeling: A Survey and Potential Application in Reservoir Systems Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(6), pages 1107-1138, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. E. Vonk & Y. Xu & M. Booij & X. Zhang & D. M. Augustijn, 2014. "Adapting Multireservoir Operation to Shifting Patterns of Water Supply and Demand," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(3), pages 625-643, February.
    2. Silvia Padula & Julien Harou & Lazaros Papageorgiou & Yiming Ji & Mohammad Ahmad & Nigel Hepworth, 2013. "Least Economic Cost Regional Water Supply Planning – Optimising Infrastructure Investments and Demand Management for South East England’s 17.6 Million People," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(15), pages 5017-5044, December.
    3. Melissa Watanabe & Lúcia Gama Madruga & Cristina Yamaguchi & Adriana Vieira & Roseli Jenoveva-Neto, 2014. "Decision Making and Social Learning: the Case of Watershed Committee of the State of Rio Grande do Sul, Brazil," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3815-3828, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fi-John Chang & Yu-Chung Wang & Wen-Ping Tsai, 2016. "Modelling Intelligent Water Resources Allocation for Multi-users," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1395-1413, March.
    2. Silvia Padula & Julien Harou & Lazaros Papageorgiou & Yiming Ji & Mohammad Ahmad & Nigel Hepworth, 2013. "Least Economic Cost Regional Water Supply Planning – Optimising Infrastructure Investments and Demand Management for South East England’s 17.6 Million People," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(15), pages 5017-5044, December.
    3. Xiaoling Su & Jianfang Li & Vijay Singh, 2014. "Optimal Allocation of Agricultural Water Resources Based on Virtual Water Subdivision in Shiyang River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(8), pages 2243-2257, June.
    4. Fi-John Chang & Yu-Chung Wang & Wen-Ping Tsai, 2016. "Modelling Intelligent Water Resources Allocation for Multi-users," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1395-1413, March.
    5. Feng, Zhong-kai & Niu, Wen-jing & Wang, Wen-chuan & Zhou, Jian-zhong & Cheng, Chun-tian, 2019. "A mixed integer linear programming model for unit commitment of thermal plants with peak shaving operation aspect in regional power grid lack of flexible hydropower energy," Energy, Elsevier, vol. 175(C), pages 618-629.
    6. Jodlbauer, Herbert & Altendorfer, Klaus, 2010. "Trade-off between capacity invested and inventory needed," European Journal of Operational Research, Elsevier, vol. 203(1), pages 118-133, May.
    7. Wenbin Wang & Mark E. Ferguson & Shanshan Hu & Gilvan C. Souza, 2013. "Dynamic Capacity Investment with Two Competing Technologies," Manufacturing & Service Operations Management, INFORMS, vol. 15(4), pages 616-629, October.
    8. repec:cty:dpaper:10.1080/0013791x.2011.573615 is not listed on IDEAS
    9. Petersen, E. R. & Taylor, A. J., 2001. "An investment planning model for a new North-Central railway in Brazil," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(9), pages 847-862, November.
    10. T. Fowe & I. Nouiri & B. Ibrahim & H. Karambiri & J. Paturel, 2015. "OPTIWAM: An Intelligent Tool for Optimizing Irrigation Water Management in Coupled Reservoir–Groundwater Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3841-3861, August.
    11. Ornella Tarola, 2010. "Public Utilities: Privatization without Regulation," Czech Economic Review, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, vol. 4(1), pages 062-078, March.
    12. Botor, Benjamin & Böcker, Benjamin & Kallabis, Thomas & Weber, Christoph, 2021. "Information shocks and profitability risks for power plant investments – impacts of policy instruments," Energy Economics, Elsevier, vol. 102(C).
    13. Ayoub Tahiri & David Ladeveze & Pascale Chiron & Bernard Archimede & Ludovic Lhuissier, 2018. "Reservoir Management Using a Network Flow Optimization Model Considering Quadratic Convex Cost Functions on Arcs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3505-3518, August.
    14. Mojtaba Moravej & Seyed-Mohammad Hosseini-Moghari, 2016. "Large Scale Reservoirs System Operation Optimization: the Interior Search Algorithm (ISA) Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3389-3407, August.
    15. Sabet, Ehsan & Yazdani, Baback & Kian, Ramez & Galanakis, Kostas, 2020. "A strategic and global manufacturing capacity management optimisation model: A Scenario-based multi-stage stochastic programming approach," Omega, Elsevier, vol. 93(C).
    16. Dawei (David) Zhang & Barrie R. Nault & Xueqi (David) Wei, 2019. "The Strategic Value of Information Technology in Setting Productive Capacity," Information Systems Research, INFORMS, vol. 30(4), pages 1124-1144, December.
    17. Anyan Qi & Hyun-Soo Ahn & Amitabh Sinha, 2017. "Capacity Investment with Demand Learning," Operations Research, INFORMS, vol. 65(1), pages 145-164, February.
    18. repec:cty:dpaper:1464 is not listed on IDEAS
    19. Sanjay Dominik Jena & Jean-François Cordeau & Bernard Gendron, 2015. "Dynamic Facility Location with Generalized Modular Capacities," Transportation Science, INFORMS, vol. 49(3), pages 484-499, August.
    20. Li, Gang & Jiang, Hongxun & He, Tian, 2015. "A genetic algorithm-based decomposition approach to solve an integrated equipment-workforce-service planning problem," Omega, Elsevier, vol. 50(C), pages 1-17.
    21. D. Haro & J. Paredes & A. Solera & J. Andreu, 2012. "A Model for Solving the Optimal Water Allocation Problem in River Basins with Network Flow Programming When Introducing Non-Linearities," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(14), pages 4059-4071, November.
    22. Hongmin Li & Stephen C. Graves & Woonghee Tim Huh, 2014. "Optimal Capacity Conversion for Product Transitions Under High Service Requirements," Manufacturing & Service Operations Management, INFORMS, vol. 16(1), pages 46-60, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:27:y:2013:i:3:p:665-693. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.