IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v27y2013i1p25-36.html
   My bibliography  Save this article

A Generalized Predictive Model of Water Table Fluctuations in Anisotropic Aquifer Due to Intermittently Applied Time-Varying Recharge from Multiple Basins

Author

Listed:
  • A. Manglik
  • S. Rai
  • V. Singh

Abstract

Mathematical models play a key role in assessing the future behavior of a groundwater system in response to various schemes of ground water resources development such as artificial recharging and in selecting an appropriate one out of many proposed schemes for its sustainable development. This paper presents an analytical solution of groundwater flow equation for unconfined, anisotropic, 2-D rectangular aquifer under the Boussinesq approximation to predict water table fluctuations in the aquifer in response to general time-varying intermittent recharge from multiple rectangular infiltration basins of different spatial dimensions. The horizontal anisotropy incorporated in the model is such that the principal axes of the hydraulic conductivity tensor are oriented parallel to the rectangular sides of the aquifer. The time-varying recharge rate is approximated by a series of line elements of different lengths and slopes depending on the nature of variation of recharge rate. The solution is obtained by using extended finite Fourier sine transform. Application of the solution is demonstrated with the help of synthetic examples. Numerical results of the analytical solutions are verified by comparison with the results obtained from MODFLOW. Numerical results indicate significant effect of anisotropy in hydraulic conductivity on the nature of water table variation. Copyright Springer Science+Business Media B.V. 2013

Suggested Citation

  • A. Manglik & S. Rai & V. Singh, 2013. "A Generalized Predictive Model of Water Table Fluctuations in Anisotropic Aquifer Due to Intermittently Applied Time-Varying Recharge from Multiple Basins," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(1), pages 25-36, January.
  • Handle: RePEc:spr:waterr:v:27:y:2013:i:1:p:25-36
    DOI: 10.1007/s11269-012-0136-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-012-0136-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-012-0136-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rajeev Bansal & Samir Das, 2011. "Response of an Unconfined Sloping Aquifer to Constant Recharge and Seepage from the Stream of Varying Water Level," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(3), pages 893-911, February.
    2. A. Manglik & S. Rai, 1998. "Two-Dimensional Modelling of Water Table Fluctuations due to Time-Varying Recharge from Rectangular Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 12(6), pages 467-475, December.
    3. A. Manglik & S. Rai, 2000. "Modeling of Water Table Fluctuations in Response to Time-varying Recharge and Withdrawal," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 14(5), pages 339-347, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Iraj Saeedpanah & Ramin Golmohamadi Azar, 2017. "New Analytical Expressions for Two-Dimensional Aquifer Adjoining with Streams of Varying Water Level," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 403-424, January.
    2. Ali Mahdavi, 2015. "Transient-State Analytical Solution for Groundwater Recharge in Anisotropic Sloping Aquifer," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3735-3748, August.
    3. Ali Mahdavi, 2019. "Response of Triangular-Shaped Leaky Aquifers to Rainfall-Induced Groundwater Recharge: an Analytical Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(6), pages 2153-2173, April.
    4. Ali Mahdavi & Hamid Seyyedian, 2013. "Transient-State Analytical Solution for Groundwater Recharge in Triangular-Shaped Aquifers Using the Concept of Expanded Domain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 2785-2806, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali Mahdavi, 2015. "Transient-State Analytical Solution for Groundwater Recharge in Anisotropic Sloping Aquifer," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3735-3748, August.
    2. Ali Mahdavi & Hamid Seyyedian, 2013. "Transient-State Analytical Solution for Groundwater Recharge in Triangular-Shaped Aquifers Using the Concept of Expanded Domain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 2785-2806, June.
    3. Rajeev Bansal & Samir Das, 2011. "Response of an Unconfined Sloping Aquifer to Constant Recharge and Seepage from the Stream of Varying Water Level," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(3), pages 893-911, February.
    4. S. Rai & A. Manglik, 2012. "An Analytical Solution of Boussinesq Equation to Predict Water Table Fluctuations Due to Time Varying Recharge and Withdrawal from Multiple Basins, Wells and Leakage Sites," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(1), pages 243-252, January.
    5. A. Bobba, 2012. "Ground Water-Surface Water Interface (GWSWI) Modeling: Recent Advances and Future Challenges," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(14), pages 4105-4131, November.
    6. Iraj Saeedpanah & Ramin Golmohamadi Azar, 2017. "New Analytical Expressions for Two-Dimensional Aquifer Adjoining with Streams of Varying Water Level," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 403-424, January.
    7. Ali Mahdavi, 2019. "Response of Triangular-Shaped Leaky Aquifers to Rainfall-Induced Groundwater Recharge: an Analytical Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(6), pages 2153-2173, April.
    8. Debashish Goswami & Prasanta Kalita & Edward Mehnert, 2010. "Modeling and Simulation of Baseflow to Drainage Ditches During Low-flow Periods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(1), pages 173-191, January.
    9. Iraj Saeedpanah & Ramin Golmohamadi Azar, 2017. "New Analytical Solutions for Unsteady Flow in a Leaky Aquifer between Two Parallel Streams," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(7), pages 2315-2332, May.
    10. Chiu-Shia Fen & Hund-Der Yeh, 2012. "Effect of Well Radius on Drawdown Solutions Obtained with Laplace Transform and Green’s Function," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(2), pages 377-390, January.
    11. Payam Sarkhosh & Amgad Salama & Yee-Chung Jin, 2021. "Implicit Finite-Volume Scheme to Solve Coupled Saint-Venant and Darcy–Forchheimer Equations for Modeling Flow Through Porous Structures," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(13), pages 4495-4517, October.
    12. Mahdi Asadi-Aghbolaghi & Gholam Reza Rakhshandehroo, 2016. "Delineating Capture Zone of a Pumping Well in a Slanting Regional Groundwater Flow to a Stream with a Leaky Layer," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4273-4291, September.
    13. A. Manglik & S. Rai, 2000. "Modeling of Water Table Fluctuations in Response to Time-varying Recharge and Withdrawal," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 14(5), pages 339-347, October.
    14. Ghasem Zarei & Mehdi Homaee & Abdolmajid Liaghat, 2009. "Modeling Transient Evaporation from Descending Shallow Groundwater Table Based on Brooks–Corey Retention Function," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(14), pages 2867-2876, November.
    15. Concepcion Pla & Javier Valdes-Abellan & Antonio Jose Tenza-Abril & David Benavente, 2016. "Predicting Daily Water Table Fluctuations in Karstic Aquifers from GIS-Based Modelling, Climatic Settings and Extraction Wells," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(7), pages 2531-2545, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:27:y:2013:i:1:p:25-36. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.