IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v26y2012i5p1143-1163.html
   My bibliography  Save this article

Analysis of Bed Load Equations and River Bed Level Variations Using Basin-Scale Process-Based Modelling Approach

Author

Listed:
  • Md Kabir
  • Dushmanta Dutta
  • Sadayuki Hironaka
  • Alexis Pang

Abstract

Bed load transport is a key process in maintaining the dynamically stable channel geometry for restoring the form and function of river ecosystems. Bed load consists of relatively large sediment particles that are moved along the streambed by rolling, sliding or saltation. Currently, various empirical correlations are used to estimate bed load transport rates since no single procedure, whether theoretical or empirical, has yet to be universally accepted as completely satisfactory in this aspect. Bed load particles are primarily sourced from river bed materials or banks. The amount of bed load and its spatial distribution contributes significantly to river bed level changes. Hillslope sediment contribution, mostly available to the river in the form of suspended load, also plays an important role in river bed level changes. This study aims to analyse different bed load equations and the resultant computations of river bed level variations using a process-based sediment dynamic model. Analyses have revealed that different bed load equations were mainly deduced from the concept of relating bed shear stresses to their critical values which are highly factored by the slope gradient, water discharge and particle sizes. In this study, river bed level variations are calculated by estimating total surplus or deficit sediment loads (suspended loads and bed loads) in a channel section. This paper describes the application of different widely used bed load equations, and evaluation of their various parameters and relative performances for a case study area (Abukuma River Basin, Japan) using a basin-scale process-based modelling approach. Relative performances of river bed level simulations obtained by using different bed load equations are also presented. This paper elaborates on the modelling approaches for river bed load and bed level simulations. Although verifications were not done due to unavailability of field data for bed load, qualitative evaluations were conducted vis-à-vis field data on flow and suspended sediment loads as well as the bed loads presented in different past studies. Copyright Springer Science+Business Media B.V. 2012

Suggested Citation

  • Md Kabir & Dushmanta Dutta & Sadayuki Hironaka & Alexis Pang, 2012. "Analysis of Bed Load Equations and River Bed Level Variations Using Basin-Scale Process-Based Modelling Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(5), pages 1143-1163, March.
  • Handle: RePEc:spr:waterr:v:26:y:2012:i:5:p:1143-1163
    DOI: 10.1007/s11269-011-9951-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-011-9951-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-011-9951-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xianye Wang & Qingyuan Yang & Weizhen Lu & Xiekang Wang, 2011. "Effects of Bed Load Movement on Mean Flow Characteristics in Mobile Gravel Beds," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(11), pages 2781-2795, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Md Kabir & Dushmanta Dutta & Sadayuki Hironaka, 2014. "Estimating Sediment Budget at a River Basin Scale Using a Process-Based Distributed Modelling Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 4143-4160, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pritam Malakar & Akash Datta & Ratul Das, 2020. "Influence of Weak Bed-Load Transport on Mean Flow Characteristics over Immobile Smooth Bed Surface under Dynamic Equilibrium Flow Conditions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(15), pages 4959-4973, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:26:y:2012:i:5:p:1143-1163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.