IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v25y2011i4p1063-1074.html
   My bibliography  Save this article

Simulation and Multi-Objective Management of Coastal Aquifers in Semi-Arid Regions

Author

Listed:
  • George Kourakos
  • Aristotelis Mantoglou

Abstract

Groundwater is the main water resource in many semi-arid coastal regions and water demand, especially in summer months, can be very high. Groundwater withdrawal for meeting this demand often causes seawater intrusion and degradation of water quality of coastal aquifers. In order to satisfy demand, a combined management plan is proposed and is under consideration for the island of Santorini. The plan involves: (1) desalinization (if needed) of pumped water to a potable level using reverse osmosis and (2) injection into the aquifer of biologically-treated waste water. The management plan is formulated in a multi-objective, optimization framework, where simultaneous minimization of economic and environmental costs is desired, subject to a constraint so that cleaned water satisfies demand. The decision variables concern the well locations and the corresponding pumping and recharging rates. The problem is solved using a computationally efficient, multi-objective, genetic algorithm (NSGAII). The constrained multi-objective, optimization problem is transformed to an unconstrained one using a penalty function proportional to constraint violation. This extends the definition of the objective function outside the domain of feasibility. The impact of prolonged droughts on coastal aquifers is investigated by assuming various scenarios of reduced groundwater recharge. Water flow and quality in the coastal aquifer is simulated using a three-dimensional, variable density, finite difference model (SEAWAT). The method is initially applied to a test aquifer and the trade-off curves (Pareto fronts) are determinedl for each drought scenario. The trade-off curves indicate an increase on the economic and environmental cost as groundwater recharge reduces due to climate change. Copyright Springer Science+Business Media B.V. 2011

Suggested Citation

  • George Kourakos & Aristotelis Mantoglou, 2011. "Simulation and Multi-Objective Management of Coastal Aquifers in Semi-Arid Regions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(4), pages 1063-1074, March.
  • Handle: RePEc:spr:waterr:v:25:y:2011:i:4:p:1063-1074
    DOI: 10.1007/s11269-010-9677-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-010-9677-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-010-9677-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Charalampos Doulgeris & Thomas Zissis, 2014. "3D Variable Density Flow Simulation to Evaluate Pumping Schemes in Coastal Aquifers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(14), pages 4943-4956, November.
    2. Ahmad Sharafati & Siyamak Doroudi & Shamsuddin Shahid & Ali Moridi, 2021. "A Novel Stochastic Approach for Optimization of Diversion System Dimension by Considering Hydrological and Hydraulic Uncertainties," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(11), pages 3649-3677, September.
    3. J. Sreekanth & Bithin Datta, 2011. "Comparative Evaluation of Genetic Programming and Neural Network as Potential Surrogate Models for Coastal Aquifer Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(13), pages 3201-3218, October.
    4. Jose-Luis Molina & Raziyeh Farmani & John Bromley, 2011. "Aquifers Management through Evolutionary Bayesian Networks: The Altiplano Case Study (SE Spain)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(14), pages 3883-3909, November.
    5. M. Calvache & J. Sánchez-Úbeda & C. Duque & M. López-Chicano & B. Torre, 2016. "Evaluation of Analytical Methods to Study Aquifer Properties with Pumping Tests in Coastal Aquifers with Numerical Modelling (Motril-Salobreña Aquifer)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 559-575, January.
    6. Elmira Valipour & Hamed Ketabchi & Reza Safari shali & Saeed Morid, 2023. "Equity, Social Welfare, and Economic Benefit Efficiency in the Optimal Allocation of Coastal Groundwater Resources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(8), pages 2969-2990, June.
    7. Lee, Sangkeum & Cho, Hong-Yeon & Har, Dongsoo, 2018. "Operation optimization with jointly controlled modules powered by hybrid energy source: A case study of desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3070-3080.
    8. Annette Hansen & Harrie-Jan Hendricks Franssen & Peter Bauer-Gottwein & Henrik Madsen & Dan Rosbjerg & Hans-Peter Kaiser, 2013. "Well Field Management Using Multi-Objective Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(3), pages 629-648, February.
    9. Hany Abd-Elhamid & Akbar Javadi, 2011. "A Cost-Effective Method to Control Seawater Intrusion in Coastal Aquifers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(11), pages 2755-2780, September.
    10. Akbar Javadi & Mohammed Hussain & Mohsen Sherif & Raziyeh Farmani, 2015. "Multi-objective Optimization of Different Management Scenarios to Control Seawater Intrusion in Coastal Aquifers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 1843-1857, April.
    11. Chefi Triki & Slim Zekri & Ali Al-Maktoumi & Mahsa Fallahnia, 2017. "An Artificial Intelligence Approach for the Stochastic Management of Coastal Aquifers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(15), pages 4925-4939, December.
    12. M. L. Calvache & J. P. Sánchez-Úbeda & C. Duque & M. López-Chicano & B. Torre, 2016. "Evaluation of Analytical Methods to Study Aquifer Properties with Pumping Tests in Coastal Aquifers with Numerical Modelling (Motril-Salobreña Aquifer)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 559-575, January.
    13. Domenico Baú, 2012. "Planning of Groundwater Supply Systems Subject to Uncertainty Using Stochastic Flow Reduced Models and Multi-Objective Evolutionary Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(9), pages 2513-2536, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:25:y:2011:i:4:p:1063-1074. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.