IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v24y2010i3p415-435.html
   My bibliography  Save this article

Effects of Anthropogenic Influences on the Trophic State, Land Uses and Aquatic Vegetation in a Shallow Mediterranean Lake: Implications for Restoration

Author

Listed:
  • E. Papastergiadou
  • I. Kagalou
  • K. Stefanidis
  • A. Retalis
  • I. Leonardos

Abstract

Lake Pamvotis, NW Greece is a shallow Mediterranean eutrophic lake that has changed drastically over the past 50 years. Strong effects, resulted mainly from anthropogenic causes, in the hydrological regime are shown for this area using long term hydrological data and a GIS system for extracting land cover/use changes. A set of aerial imagery acquired in 1945 through 2002 were used to monitor and assess the spatial and temporal changes in land cover/use, focused mainly on the lake’s surface area and its surrounding ecosystem (Natura 2000 area). The significance of the changes in land cover/use distribution within Pamvotis wetland is further discussed depicting the role of the anthropogenic influence on the fragile ecosystem that resulted in the shrinkage of lake’s habitats extent. The purpose of this analysis was to examine the long-term changes on macrophyte community composition, species occurrence and relative abundance with water quality and water level changes over the past century, using historical data, aerial photos and GIS techniques. The results showed that for the last 25 years annual water level fluctuation ranged from 70 to 159 cm. Water level starts decreasing in mid June and increasing again gradually from November until March–April. Intra annual water level fluctuation seems to be affected by land use for agricultural purpose through intensive irrigation and the summer drought as well. A dramatic decline of the submerged vegetation is apparent mainly attributed to anthropogenic pressures. Regarding the land cover/use changes, the most notable and significant alterations are concerning the urban development around the lake, the disappearance of wet meadows and the extension of reed beds. Finally it seems that water budget data as well as the response of the key eutrophication parameters are affected from both hydrological alterations and point/non-point pollution sources. Copyright Springer Science+Business Media B.V. 2010

Suggested Citation

  • E. Papastergiadou & I. Kagalou & K. Stefanidis & A. Retalis & I. Leonardos, 2010. "Effects of Anthropogenic Influences on the Trophic State, Land Uses and Aquatic Vegetation in a Shallow Mediterranean Lake: Implications for Restoration," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(3), pages 415-435, February.
  • Handle: RePEc:spr:waterr:v:24:y:2010:i:3:p:415-435
    DOI: 10.1007/s11269-009-9453-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-009-9453-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-009-9453-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. N. Mantzafleri & A. Psilovikos & A. Blanta, 2009. "Water Quality Monitoring and Modeling in Lake Kastoria, Using GIS. Assessment and Management of Pollution Sources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(15), pages 3221-3254, December.
    2. E. Papastergiadou & A. Retalis & A. Apostolakis & Th. Georgiadis, 2008. "Environmental Monitoring of Spatio-temporal Changes Using Remote Sensing and GIS in a Mediterranean Wetland of Northern Greece," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(5), pages 579-594, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao Pu & Hongguang Cheng & Lu Lu & Shengtian Yang & Jing Xie & Fanghua Hao, 2015. "Spatial Profiling and Assessing Dominance of Sources to Water Phosphorus Burden in a Shallow Lake," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(3), pages 715-729, February.
    2. Francis Rathinam & Sayak Khatua & Zeba Siddiqui & Manya Malik & Pallavi Duggal & Samantha Watson & Xavier Vollenweider, 2021. "Using big data for evaluating development outcomes: A systematic map," Campbell Systematic Reviews, John Wiley & Sons, vol. 17(3), September.
    3. Konstantinos Stefanidis & George Varlas & Anastasios Papadopoulos & Elias Dimitriou, 2021. "Four Decades of Surface Temperature, Precipitation, and Wind Speed Trends over Lakes of Greece," Sustainability, MDPI, vol. 13(17), pages 1-14, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giorgos Papadavid & Diofantos Hadjimitsis & Leonidas Toulios & Silas Michaelides, 2013. "A Modified SEBAL Modeling Approach for Estimating Crop Evapotranspiration in Semi-arid Conditions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(9), pages 3493-3506, July.
    2. Azam Haidary & Bahman Amiri & Jan Adamowski & Nicola Fohrer & Kaneyuki Nakane, 2013. "Assessing the Impacts of Four Land Use Types on the Water Quality of Wetlands in Japan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2217-2229, May.
    3. Ismail Chenini & Abdallah Mammou & Moufida El May, 2010. "Groundwater Recharge Zone Mapping Using GIS-Based Multi-criteria Analysis: A Case Study in Central Tunisia (Maknassy Basin)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(5), pages 921-939, March.
    4. Vincent Paul Obade & Rattan Lal & Richard Moore, 2014. "Assessing the Accuracy of Soil and Water Quality Characterization Using Remote Sensing," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(14), pages 5091-5109, November.
    5. Xiaonan Ji & Jianghai Chen & Yali Guo, 2022. "A Multi-Dimensional Investigation on Water Quality of Urban Rivers with Emphasis on Implications for the Optimization of Monitoring Strategy," Sustainability, MDPI, vol. 14(7), pages 1-18, March.
    6. Lawrence Kiage & Nan Walker, 2009. "Using NDVI from MODIS to Monitor Duckweed Bloom in Lake Maracaibo, Venezuela," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(6), pages 1125-1135, April.
    7. Ivan Marić & Lovre Panđa & Josip Faričić & Ante Šiljeg & Fran Domazetović & Tome Marelić, 2022. "Long-Term Assessment of Spatio-Temporal Landuse/Landcover Changes (LUCCs) of Ošljak Island (Croatia) Using Multi-Temporal Data—Invasion of Aleppo Pine," Land, MDPI, vol. 11(5), pages 1-38, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:24:y:2010:i:3:p:415-435. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.