IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v23y2009i4p731-753.html
   My bibliography  Save this article

Cost–Effectiveness Analysis of Water Management Measures in Two River Basins of Jordan and Lebanon

Author

Listed:
  • Stéphanie Aulong
  • Madjid Bouzit
  • Nathalie Dörfliger

Abstract

Chekka Bay area and Amman Zarqa Basin are two complex river basins in northern Lebanon and northern Jordan respectively. Both regions are faced with growing populations, urban development and land-use changes. They also both suffer from water-resource scarcity and contrasted seasons that threaten the perennity of sufficient water supply. Decision makers may have several water-management measures in response to the issue of water deficiency in their regions, but they need simple methods and criteria for ranking the alternatives with respect to their economical efficiency. In this paper, the Cost–Effectiveness Analysis method is used for supporting decisions to optimally combine water management measures at the river basin scale. Hydrologic and socio-economic data are used for assessing the future water balance and determine the sustainable management objectives. Both supply- and demand-side measures are investigated and compared. The analysis is based on two basic metrics to assess cost–effectiveness ratios: the average annualized and the marginal (or incremental) unit cost. The results show that the cost–effectiveness ranking of alternative measures strongly depends on the selected metric. The average annualized unit cost systematically favours large scaled water measures with high costs while the average incremental unit cost facilitates the selection of smaller and costless measures reflecting the time preference for water supply. Copyright Springer Science+Business Media B.V. 2009

Suggested Citation

  • Stéphanie Aulong & Madjid Bouzit & Nathalie Dörfliger, 2009. "Cost–Effectiveness Analysis of Water Management Measures in Two River Basins of Jordan and Lebanon," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(4), pages 731-753, March.
  • Handle: RePEc:spr:waterr:v:23:y:2009:i:4:p:731-753
    DOI: 10.1007/s11269-008-9297-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-008-9297-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-008-9297-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Deepesh Machiwal & Madan Jha & P. Singh & S. Mahnot & A. Gupta, 2004. "Planning and Design of Cost-effective Water Harvesting Structures for Efficient Utilization of Scarce Water Resources in Semi-arid Regions of Rajasthan, India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 18(3), pages 219-235, June.
    2. P. Latinopoulos & N. Mylopoulos & Y. Mylopoulos, 1997. "Risk-Based Decision Analysis in the Design of Water Supply Projects," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 11(4), pages 263-281, August.
    3. Lacroix, Anne & Beaudoin, Nicolas & Makowski, David, 2005. "Agricultural water nonpoint pollution control under uncertainty and climate variability," Ecological Economics, Elsevier, vol. 53(1), pages 115-127, April.
    4. Schleiniger, Reto, 1999. "Comprehensive cost-effectiveness analysis of measures to reduce nitrogen emissions in Switzerland," Ecological Economics, Elsevier, vol. 30(1), pages 147-159, July.
    5. A. Loukas & N. Mylopoulos & L. Vasiliades, 2007. "A Modeling System for the Evaluation of Water Resources Management Strategies in Thessaly, Greece," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(10), pages 1673-1702, October.
    6. Gilau, Asmerom M. & Small, Mitchell J., 2008. "Designing cost-effective seawater reverse osmosis system under optimal energy options," Renewable Energy, Elsevier, vol. 33(4), pages 617-630.
    7. Edawi Wheida & Ronny Verhoeven, 2007. "An alternative solution of the water shortage problem in Libya," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(6), pages 961-982, June.
    8. Yang, Wanhong & Khanna, Madhu & Farnsworth, Richard & Onal, Hayri, 2003. "Integrating economic, environmental and GIS modeling to target cost effective land retirement in multiple watersheds," Ecological Economics, Elsevier, vol. 46(2), pages 249-267, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ward, Frank A., 2023. "Innovations for the Water Resource Economics Curriculum: Training the Next Generation," Applied Economics Teaching Resources (AETR), Agricultural and Applied Economics Association, vol. 5(3), September.
    2. Corentin Girard & Jean-Daniel Rinaudo & Manuel Pulido-Velazquez, 2015. "Index-Based Cost-Effectiveness Analysis vs. Least-Cost River Basin Optimization Model: Comparison in the Selection of a Programme of Measures at the River Basin Scale," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(11), pages 4129-4155, September.
    3. Ward, Frank A., 2023. "Innovations for the Water Resource Economics Curriculum: Training the Next Generation," Applied Economics Teaching Resources (AETR), Agricultural and Applied Economics Association, vol. 5(2), April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Balana, Bedru Babulo & Vinten, Andy & Slee, Bill, 2011. "A review on cost-effectiveness analysis of agri-environmental measures related to the EU WFD: Key issues, methods, and applications," Ecological Economics, Elsevier, vol. 70(6), pages 1021-1031, April.
    2. George HALKOS & Georgia GALANI, 2014. "Cost Effectiveness Analysis in Reducing Nutrient Loading in Baltic and Black Seas A Review," Journal of Advanced Research in Management, ASERS Publishing, vol. 5(1), pages 28-51.
    3. Daniel Chami & Alessandra Scardigno & Giulio Malorgio, 2011. "Impacts of Combined Technical and Economic Measures on Water Saving in Agriculture under Water Availability Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(14), pages 3911-3929, November.
    4. Vassilios Pisinaras & Frank Herrmann & Andreas Panagopoulos & Evangelos Tziritis & Ian McNamara & Frank Wendland, 2023. "Fully Distributed Water Balance Modelling in Large Agricultural Areas—The Pinios River Basin (Greece) Case Study," Sustainability, MDPI, vol. 15(5), pages 1-29, February.
    5. Nadjib Drouiche & Noreddine Ghaffour & Mohamed Naceur & Hacene Mahmoudi & Tarik Ouslimane, 2011. "Reasons for the Fast Growing Seawater Desalination Capacity in Algeria," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(11), pages 2743-2754, September.
    6. Skroufouta, S. & Baltas, E., 2021. "Investigation of hybrid renewable energy system (HRES) for covering energy and water needs on the Island of Karpathos in Aegean Sea," Renewable Energy, Elsevier, vol. 173(C), pages 141-150.
    7. Lampros Vasiliades & Athanasios Loukas & Nikos Liberis, 2011. "A Water Balance Derived Drought Index for Pinios River Basin, Greece," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(4), pages 1087-1101, March.
    8. Changsen Zhao & Bing Shen & Lingmei Huang & Zhidong Lei & Heping Hu & Shixiu Yang, 2009. "A Dissipative Hydrological Model for the Hotan Oasis (DHMHO)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(6), pages 1183-1210, April.
    9. Cheryll C. Launio & Constancio A. Asis, Jr. & Rowena G. Manalili & Evelyn F. Javier, 2013. "Economic Analysis of Rice Straw Management Alternatives and Understanding Farmers' Choices," EEPSEA Research Report rr2013031, Economy and Environment Program for Southeast Asia (EEPSEA), revised Mar 2013.
    10. Prathapar, S. & Dhar, S. & Rao, G. Tamma & Maheshwari, B., 2015. "Performance and impacts of managed aquifer recharge interventions for agricultural water security: A framework for evaluation," Agricultural Water Management, Elsevier, vol. 159(C), pages 165-175.
    11. Cem P. Cetinkaya & Mert Can Gunacti, 2018. "Multi-Criteria Analysis of Water Allocation Scenarios in a Water Scarce Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(8), pages 2867-2884, June.
    12. Neville D Crossman & Jeffrey D Connor & Brett A Bryan & David A Summers & John Ginnivan, 2009. "Reconfiguring an Irrigation Landscape to Improve Provision of Ecosystem Services," Socio-Economics and the Environment in Discussion (SEED) Working Paper Series 2009-07, CSIRO Sustainable Ecosystems.
    13. Raffaele Casa & Matteo Rossi & Giuseppe Sappa & Antonio Trotta, 2009. "Assessing Crop Water Demand by Remote Sensing and GIS for the Pontina Plain, Central Italy," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(9), pages 1685-1712, July.
    14. van Wenum, J. H. & Wossink, G. A. A. & Renkema, J. A., 2004. "Location-specific modeling for optimizing wildlife management on crop farms," Ecological Economics, Elsevier, vol. 48(4), pages 395-407, April.
    15. Cyril Bourgeois & Nosra Ben-Fradj & Mélissa Clodic & Pierre-Alain Jayet, 2011. "How cost-effective is a mixed policy targeting the management of three pollutants from N-fertilizers," Working Papers 2011/03, INRA, Economie Publique.
    16. Glendenning, C.J. & Vervoort, R.W., 2011. "Hydrological impacts of rainwater harvesting (RWH) in a case study catchment: The Arvari River, Rajasthan, India: Part 2. Catchment-scale impacts," Agricultural Water Management, Elsevier, vol. 98(4), pages 715-730, February.
    17. Wang Xiao-jun & Zhang Jian-yun & Wang Jian-hua & He Rui-min & Amgad ElMahdi & Liu Jin-hua & Wang Xin-gong & David King & Shamsuddin Shahid, 2014. "Climate change and water resources management in Tuwei river basin of Northwest China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 19(1), pages 107-120, January.
    18. Weiwei Shao & Dawen Yang & Heping Hu & Kenji Sanbongi, 2009. "Water Resources Allocation Considering the Water Use Flexible Limit to Water Shortage—A Case Study in the Yellow River Basin of China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(5), pages 869-880, March.
    19. Fröschl, Lena & Pierrard, Roger & Schönbäck, Wilfried, 2008. "Cost-efficient choice of measures in agriculture to reduce the nitrogen load flowing from the Danube River into the Black Sea: An analysis for Austria, Bulgaria, Hungary and Romania," Ecological Economics, Elsevier, vol. 68(1-2), pages 96-105, December.
    20. Jiao Liu & Tie Liu & Anming Bao & Philippe Maeyer & Xianwei Feng & Scott N. Miller & Xi Chen, 2016. "Assessment of Different Modelling Studies on the Spatial Hydrological Processes in an Arid Alpine Catchment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1757-1770, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:23:y:2009:i:4:p:731-753. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.