IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v21y2007i10p1763-1780.html
   My bibliography  Save this article

Estimation of Discharge and End Depth in Trapezoidal Channel by Support Vector Machines

Author

Listed:
  • Mahesh Pal
  • Arun Goel

Abstract

This paper presents the results of an application of support vector machines based modelling technique (radial based kernel and polynomial kernel) to determine discharge and end-depth of a free overfall occurring over a smooth trapezoidal channel with positive, horizontal or zero and negative bottom slopes. The data used in this study are taken from the earlier published work reported in the literature (Ahmad 2001 ). The results of the study indicate that the radial based function and polynomial kernels support vector machines modelling technique can be used effectively for predicting the discharge and the end depth for a trapezoidal shaped channel with different slopes as compared to the empirical relations suggested by Ahmad ( 2001 ); Gupta et al. ( 1993 ) and a back propagation neural network technique. The predicted values of both discharge and end depth compared well to the results obtained by using empirical relations derived in previous studies as well as with a back propagation neural network model. In case of discharge prediction, correlation coefficient was more than 0.995 with all three different slopes, while it was more than 0.996 in predicting the end depth using radial based kernel of support vector machines algorithm. Thus, suggesting the application and usefulness of this technique in predicting the discharge as well as end depth in the trapezoidal shaped channel as an alternative to the empirical relations and neural network algorithm. Further, a smaller computational time is an added advantage of using support vector machines in comparison to the neural network classifier, as observed in the present study. Copyright Springer Science+Business Media, Inc. 2007

Suggested Citation

  • Mahesh Pal & Arun Goel, 2007. "Estimation of Discharge and End Depth in Trapezoidal Channel by Support Vector Machines," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(10), pages 1763-1780, October.
  • Handle: RePEc:spr:waterr:v:21:y:2007:i:10:p:1763-1780
    DOI: 10.1007/s11269-006-9126-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-006-9126-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-006-9126-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Krishna Singh & Mahesh Pal & V. Singh, 2010. "Estimation of Mean Annual Flood in Indian Catchments Using Backpropagation Neural Network and M5 Model Tree," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 2007-2019, August.
    2. Andres Ticlavilca & Mac McKee, 2011. "Multivariate Bayesian Regression Approach to Forecast Releases from a System of Multiple Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 523-543, January.
    3. García Nieto, P.J. & García-Gonzalo, E. & Alonso Fernández, J.R. & Díaz Muñiz, C., 2019. "Water eutrophication assessment relied on various machine learning techniques: A case study in the Englishmen Lake (Northern Spain)," Ecological Modelling, Elsevier, vol. 404(C), pages 91-102.
    4. Kiyoumars Roushangar & Mahdi Majedi Asl & Saman Shahnazi, 2021. "Hydraulic Performance of PK Weirs Based on Experimental Study and Kernel-based Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(11), pages 3571-3592, September.
    5. Manish Goyal & C. Ojha, 2011. "Estimation of Scour Downstream of a Ski-Jump Bucket Using Support Vector and M5 Model Tree," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(9), pages 2177-2195, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:21:y:2007:i:10:p:1763-1780. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.