IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v19y2005i6p759-789.html
   My bibliography  Save this article

Virtual Water in Global Food and Water Policy Making: Is There a Need for Rethinking?

Author

Listed:
  • M. Kumar
  • O. Singh

Abstract

The argument that economies that face acute water scarcity problems can and should meet their water demand for food through cereal imports from water-rich countries; and that virtual water trade can be used to achieve water securities has become dominant in global water discussions. Analysis of country level data on renewable freshwater availability and net virtual water trade of 146 nations across the world shows that a country's virtual water trade is not determined by its water situation. Some countries have the advantage of high “economic efficiency” in food production and have surplus water, but resort to food import, whereas some water scarce countries achieve high virtual water trade balances. Further analysis with a set of 131 countries showed that virtual water trade increased with increase in gross cropped area. This is because of two reasons: First, when access to arable land increases, the ability to utilize available blue water for irrigation increases. Second, increasing access to arable land improves the access to water held in the soil profile as “free good”, a factor not taken into account in assessing water availability. Hence, many of the humid, water-rich countries will not be in a position to produce surplus food and feed the water scarce nations; and virtual water often flows out of water-poor, land rich countries to land-poor water-rich countries. This means that “distribution of scarcity” and “global water use efficiency”, are goals that are difficult to achieve through virtual water trade in a practical sense. For a water-poor, but land rich country, virtual water import offer little scope as a sound water management strategy as what is often achieved through virtual water trade is improved “global land use efficiency”. The important policy inferences emerging from the analyses are two: First, assessing the food security challenges posed to nations in future purely from a water resource perspective provides a distorted view of the food security scenario. National policies on food security should take into account “access to arable land” apart from water availability. Second, analysis of water challenges posed by nations purely from the point of view of renewable water availability and aggregate demands will be dangerous. Access to water in the soil profile, which is determined by access to arable land, would be an important determinant of effective water availability. Copyright Springer Science + Business Media, Inc. 2005

Suggested Citation

  • M. Kumar & O. Singh, 2005. "Virtual Water in Global Food and Water Policy Making: Is There a Need for Rethinking?," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 19(6), pages 759-789, December.
  • Handle: RePEc:spr:waterr:v:19:y:2005:i:6:p:759-789
    DOI: 10.1007/s11269-005-3278-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-005-3278-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-005-3278-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Seckler, David & Amarasinghe, Upali A. & Molden, David J. & de Silva, Radhika & Barker, Randolph, 1998. "World water demand and supply, 1990 to 2025: scenarios and issues," IWMI Research Reports 61108, International Water Management Institute.
    2. Evenson, Robert E. & Pray, Carl E. & Rosegrant, Mark W., 1999. "Agricultural research and productivity growth in India:," Research reports 109, International Food Policy Research Institute (IFPRI).
    3. Radwan Al-Weshah, 2000. "Optimal Use of Irrigation Water in the Jordan Valley: A Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 14(5), pages 327-338, October.
    4. Kumar, M. Dinesh, 2005. "Impact of electricity prices and volumetric water allocation on energy and groundwater demand management:: analysis from Western India," Energy Policy, Elsevier, vol. 33(1), pages 39-51, January.
    5. Kumar, M. D., 2003. "Food security and sustainable agriculture in India: The water management challenge," IWMI Working Papers H033990, International Water Management Institute.
    6. Wichelns, Dennis, 2001. "The role of `virtual water' in efforts to achieve food security and other national goals, with an example from Egypt," Agricultural Water Management, Elsevier, vol. 49(2), pages 131-151, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumar, M. Dinesh & van Dam, J. C., 2009. "Improving water productivity in agriculture in India: beyond \u2018more crop per drop\u2019," IWMI Books, Reports H042639, International Water Management Institute.
    2. Kumar, M. Dinesh & van Dam, J. C., 2008. "Improving water productivity in agriculture in developing economies: in search of new avenues," IWMI Conference Proceedings 245276, International Water Management Institute.
    3. Dimaranan, Betina & Duc, Le Thuc & Martin, Will, 2005. "Potential Economic Impacts of Merchandise Trade Liberalization under Viet Nam’s Accession to the WTO," Conference papers 331403, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    4. Jayanath Ananda & Mohamed Aheeyar, 2020. "An evaluation of groundwater institutions in India: a property rights perspective," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 5731-5749, August.
    5. Yang, Hong & Zehnder, Alexander J. B., 2002. "Water Scarcity and Food Import: A Case Study for Southern Mediterranean Countries," World Development, Elsevier, vol. 30(8), pages 1413-1430, August.
    6. Kumar, M. Dinesh & Narayanamoorthy, A. & Bassi, Nitin & Niranjan, V., 2011. "Addressing Agricultural Water Management Challenges in the Twelfth Plan: Some Pointers," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 66(3), pages 1-12.
    7. Kumar, M. Dinesh, 2009. "Opportunities and constraints to improving water productivity in India," Book Chapters,, International Water Management Institute.
    8. Qadir, M. & Sharma, B.R. & Bruggeman, A. & Choukr-Allah, R. & Karajeh, F., 2007. "Non-conventional water resources and opportunities for water augmentation to achieve food security in water scarce countries," Agricultural Water Management, Elsevier, vol. 87(1), pages 2-22, January.
    9. Kumar, M. Dinesh, 2009. "Opportunities and constraints to improving water productivity in India," IWMI Books, Reports H042640, International Water Management Institute.
    10. Kumar, M. Dinesh & van Dam, Jos C., 2009. "Improving water productivity in agriculture in India: beyond ‘more crop per drop’," Book Chapters,, International Water Management Institute.
    11. Kathayat, Babita & Dixit, Anil K & Chandel, B S & Sendhil, R & Sharma, A K, 2022. "Economic impact of public research investment on livestock productivity: evidence from India," Agricultural Economics Research Review, Agricultural Economics Research Association (India), vol. 35(Conferenc), December.
    12. Disha Gupta, 2023. "Free power, irrigation, and groundwater depletion: Impact of farm electricity policy of Punjab, India," Agricultural Economics, International Association of Agricultural Economists, vol. 54(4), pages 515-541, July.
    13. Ignacio Lozano-Espitia & Juan Camilo Restrepo Salazar, 2016. "El papel de la infraestructura rural en el desarrollo agrícola en Colombia," Coyuntura Económica, Fedesarrollo, vol. 46(1), pages 107-147, June.
    14. Rada, Nicholas E., 2013. "Agricultural Growth in India: Examining the Post-Green Revolution Transition," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 149547, Agricultural and Applied Economics Association.
    15. Kumar, M. Dinesh & Singh, O.P. & Samad, Madar & Purohit, Chaitali & Didyala, Malkit Singh, 2009. "Water productivity of irrigated agriculture in India: potential areas for improvement," Book Chapters,, International Water Management Institute.
    16. Nelson Mango & Clifton Makate & Lulseged Tamene & Powell Mponela & Gift Ndengu, 2018. "Adoption of Small-Scale Irrigation Farming as a Climate-Smart Agriculture Practice and Its Influence on Household Income in the Chinyanja Triangle, Southern Africa," Land, MDPI, vol. 7(2), pages 1-19, April.
    17. Giulio Sperandio & Mauro Pagano & Andrea Acampora & Vincenzo Civitarese & Carla Cedrola & Paolo Mattei & Roberto Tomasone, 2022. "Deficit Irrigation for Efficiency and Water Saving in Poplar Plantations," Sustainability, MDPI, vol. 14(21), pages 1-16, October.
    18. Carlos E. Carpio, & Octavio A. Ramirez, & Tullaya Boonsaeng, 2011. "Potential for Tradable Water Allocation and Rights in Jordan," Land Economics, University of Wisconsin Press, vol. 87(4), pages 595-609.
    19. repec:ags:phajad:199094 is not listed on IDEAS
    20. Amarasinghe, Upali A., 2010. "Spatial variation of water supply and demand in Sri Lanka," IWMI Conference Proceedings 211310, International Water Management Institute.
    21. Jean-Philippe Venot & François Molle, 2008. "Groundwater Depletion in the Jordan Highlands: Can Pricing Policies Regulate Irrigation Water Use?," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(12), pages 1925-1941, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:19:y:2005:i:6:p:759-789. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.