IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v12y1998i4p251-269.html
   My bibliography  Save this article

Hydrodynamic Modeling of Wetlands for Flood Detention

Author

Listed:
  • Vassilios Tsihrintzis
  • David John
  • Paul Tremblay

Abstract

The application of a link-node model in modeling hydrodynamics of wetland areas related to flood detention design is presented through the description of modeling and design efforts of an actual project, the first privately-owned wetland mitigation bank in Florida. The 142-ha project is located in the Chapel Trail Preserve of the City of Pembroke Pines, South Florida, where a degraded site is transformed into a healthy, self-sustaining wetland ecosystem. Creation of the wetlands, located adjacent to an existing development, required careful evaluation of drainage conditions. To properly design the wetland site, a hydrodynamic model was developed which allowed sizing of hydraulic structures and computation of maximum water surface elevations. The paper presents model description and calibration using field data, parameter sensitivity, general application in the project and use as a design tool. The model was found to be a valuable tool that can be applied in similar projects. Copyright Kluwer Academic Publishers 1998

Suggested Citation

  • Vassilios Tsihrintzis & David John & Paul Tremblay, 1998. "Hydrodynamic Modeling of Wetlands for Flood Detention," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 12(4), pages 251-269, August.
  • Handle: RePEc:spr:waterr:v:12:y:1998:i:4:p:251-269
    DOI: 10.1023/A:1008031011773
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1023/A:1008031011773
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1023/A:1008031011773?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vassilios Tsihrintzis & Clara Sidan, 1998. "Modeling Urban Stormwater Runoff Processes Using the Santa Barbara Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 12(2), pages 139-166, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. John Reimer & Chin Wu, 2016. "Development and Application of a Nowcast and Forecast System Tool for Planning and Managing a River Chain of Lakes," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1375-1393, March.
    2. Giuseppe Del Giudice & Giacomo Rasulo & Daniele Siciliano & Roberta Padulano, 2014. "Combined Effects of Parallel and Series Detention Basins for Flood Peak Reduction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 3193-3205, August.
    3. Vassilios Tsihrintzis & Edgar Madiedo, 2000. "Hydraulic Resistance Determination in Marsh Wetlands," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 14(4), pages 285-309, August.
    4. John R. Reimer & Chin H. Wu, 2016. "Development and Application of a Nowcast and Forecast System Tool for Planning and Managing a River Chain of Lakes," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1375-1393, March.
    5. Georgios Pavlikakis & Vassilios Tsihrintzis, 2000. "Ecosystem Management: A Review of a New Concept and Methodology," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 14(4), pages 257-283, August.
    6. Maria Economopoulou & Vassilios Tsihrintzis, 2003. "Design Methodology and Area Sensitivity Analysis of Horizontal Subsurface Flow Constructed Wetlands," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 17(2), pages 147-174, April.
    7. Maria A. Economopoulou & Vassilios A. Tsihrintzis, 2004. "Design Methodology of Free Water Surface Constructed Wetlands," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 18(6), pages 541-565, December.
    8. Christine Schleupner, 2007. "Wetland distribution modelling for optimal land use options in Europe," Working Papers FNU-135, Research unit Sustainability and Global Change, Hamburg University, revised May 2007.
    9. Lisa A. Peterson & Patricia M. Awerbuch & Sabrina Spatari, 2021. "Environmental and economic implications of stormwater management alternatives in rural development," Journal of Industrial Ecology, Yale University, vol. 25(4), pages 1076-1088, August.
    10. Giuseppe Del Giudice & Rudy Gargano & Giacomo Rasulo & Daniele Siciliano, 2014. "Preliminary Estimate of Detention Basin Efficiency at Watershed Scale," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(4), pages 897-913, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deus, Ricardo & Brito, David & Kenov, Isabella Ascione & Lima, Marcelo & Costa, Vanessa & Medeiros, Adaelson & Neves, Ramiro & Alves, C.N., 2013. "Three-dimensional model for analysis of spatial and temporal patterns of phytoplankton in Tucuruí reservoir, Pará, Brazil," Ecological Modelling, Elsevier, vol. 253(C), pages 28-43.
    2. Fränz Zeimetz & Bettina Schaefli & Guillaume Artigue & Javier García Hernández & Anton J. Schleiss, 2018. "Swiss Rainfall Mass Curves and their Influence on Extreme Flood Simulation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(8), pages 2625-2638, June.
    3. Georgios Pavlikakis & Vassilios Tsihrintzis, 2000. "Ecosystem Management: A Review of a New Concept and Methodology," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 14(4), pages 257-283, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:12:y:1998:i:4:p:251-269. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.