IDEAS home Printed from https://ideas.repec.org/a/spr/topjnl/v3y1995i2p265-283.html
   My bibliography  Save this article

On ranking of feasible solutions of a bottleneck linear programming problem

Author

Listed:
  • K. Mathur
  • M. Puri
  • S. Bansal

Abstract

No abstract is available for this item.

Suggested Citation

  • K. Mathur & M. Puri & S. Bansal, 1995. "On ranking of feasible solutions of a bottleneck linear programming problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 3(2), pages 265-283, December.
  • Handle: RePEc:spr:topjnl:v:3:y:1995:i:2:p:265-283
    DOI: 10.1007/BF02568589
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/BF02568589
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/BF02568589?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Seymour Kaplan, 1974. "Application of Programs with Maximin Objective Functions to Problems of Optimal Resource Allocation," Operations Research, INFORMS, vol. 22(4), pages 802-807, August.
    2. R. S. Garfinkel & M. R. Rao, 1971. "The bottleneck transportation problem," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 18(4), pages 465-472, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. I. Stancu-Minasian & R. Caballero & E. Cerdá & M. Muñoz, 1999. "The stochastic bottleneck linear programming problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 7(1), pages 123-143, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. I. Stancu-Minasian & R. Caballero & E. Cerdá & M. Muñoz, 1999. "The stochastic bottleneck linear programming problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 7(1), pages 123-143, June.
    2. Fujimoto, Masako & Yamada, Takeo, 2006. "An exact algorithm for the knapsack sharing problem with common items," European Journal of Operational Research, Elsevier, vol. 171(2), pages 693-707, June.
    3. Hanan Luss & Donald R. Smith, 1988. "Multiperiod allocation of limited resources: A minimax approach," Naval Research Logistics (NRL), John Wiley & Sons, vol. 35(4), pages 493-501, August.
    4. Kasin Ransikarbum & Scott J. Mason, 2016. "Multiple-objective analysis of integrated relief supply and network restoration in humanitarian logistics operations," International Journal of Production Research, Taylor & Francis Journals, vol. 54(1), pages 49-68, January.
    5. Prabuddha De & Jay B. Ghosh & Charles E. Wells, 1992. "On the solution of a stochastic bottleneck assignment problem and its variations," Naval Research Logistics (NRL), John Wiley & Sons, vol. 39(3), pages 389-397, April.
    6. Fanrong Xie & Zuoan Li, 2022. "An iterative solution technique for capacitated two-stage time minimization transportation problem," 4OR, Springer, vol. 20(4), pages 637-684, December.
    7. Hanan Luss, 1999. "On Equitable Resource Allocation Problems: A Lexicographic Minimax Approach," Operations Research, INFORMS, vol. 47(3), pages 361-378, June.
    8. G. Yu, 1998. "Min-Max Optimization of Several Classical Discrete Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 98(1), pages 221-242, July.
    9. M Kumral, 2011. "Incorporating geo-metallurgical information into mine production scheduling," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 60-68, January.
    10. Yamada, Takeo & Futakawa, Mayumi & Kataoka, Seiji, 1998. "Some exact algorithms for the knapsack sharing problem," European Journal of Operational Research, Elsevier, vol. 106(1), pages 177-183, April.
    11. Singh, Gurwinder & Singh, Amarinder, 2023. "Extension of Particle Swarm Optimization algorithm for solving two-level time minimization transportation problem," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 727-742.
    12. Prabhjot Kaur & Anuj Sharma & Vanita Verma & Kalpana Dahiya, 2022. "An alternate approach to solve two-level hierarchical time minimization transportation problem," 4OR, Springer, vol. 20(1), pages 23-61, March.
    13. Abraham P. Punnen & Ruonan Zhang, 2011. "Quadratic bottleneck problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(2), pages 153-164, March.
    14. Takahito Kuno & Kouji Mori & Hiroshi Konno, 1989. "A mofified gub algorithm for solving linear minimax problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 36(3), pages 311-320, June.
    15. Buchanan, John & Gardiner, Lorraine, 2003. "A comparison of two reference point methods in multiple objective mathematical programming," European Journal of Operational Research, Elsevier, vol. 149(1), pages 17-34, August.
    16. Shalabh Singh & Sonia Singh, 2022. "Shipment in a multi-choice environment: a case study of shipping carriers in US," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(4), pages 1195-1219, December.
    17. Sonia & Munish Puri, 2004. "Two level hierarchical time minimizing transportation problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 12(2), pages 301-330, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:topjnl:v:3:y:1995:i:2:p:265-283. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.