IDEAS home Printed from https://ideas.repec.org/a/spr/topjnl/v24y2016i3d10.1007_s11750-016-0410-7.html
   My bibliography  Save this article

Clustering intelligent transportation sensors using public transportation

Author

Listed:
  • Tejswaroop Geetla

    (University at Buffalo (SUNY))

  • Rajan Batta

    (University at Buffalo (SUNY)
    Center for Transportation Injury Research, CUBRC)

  • Alan Blatt

    (Center for Transportation Injury Research, CUBRC)

  • Marie Flanigan

    (Center for Transportation Injury Research, CUBRC)

  • Kevin Majka

    (Center for Transportation Injury Research, CUBRC)

Abstract

Advanced transportation sensors use a wireless medium to communicate and use data fusion techniques to provide complete information. Large-scale use of intelligent transportation sensors can lead to data bottlenecks in an ad-hoc wireless sensor network, which needs to be reliable and should provide a framework to sensors that constantly join and leave the network. A possible solution is to use public transportation vehicles as data fusion nodes or cluster heads. This paper presents a mathematical programming approach to use public transportation vehicles as cluster heads. The mathematical programming solution seeks to maximize benefit achieved by covering both mobile and stationary sensors, while considering cost/penalty associated with changing cluster head locations. A simulation is developed to capture realistic considerations of a transportation network. This simulation is used to validate the solution provided by the mathematical model.

Suggested Citation

  • Tejswaroop Geetla & Rajan Batta & Alan Blatt & Marie Flanigan & Kevin Majka, 2016. "Clustering intelligent transportation sensors using public transportation," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 594-611, October.
  • Handle: RePEc:spr:topjnl:v:24:y:2016:i:3:d:10.1007_s11750-016-0410-7
    DOI: 10.1007/s11750-016-0410-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11750-016-0410-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11750-016-0410-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dipesh J. Patel & Rajan Batta & Rakesh Nagi, 2005. "Clustering Sensors in Wireless Ad Hoc Networks Operating in a Threat Environment," Operations Research, INFORMS, vol. 53(3), pages 432-442, June.
    2. Erdemir, Elif Tokar & Batta, Rajan & Spielman, Seth & Rogerson, Peter A. & Blatt, Alan & Flanigan, Marie, 2008. "Location coverage models with demand originating from nodes and paths: Application to cellular network design," European Journal of Operational Research, Elsevier, vol. 190(3), pages 610-632, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hernan Caceres & Rajan Batta & Qing He, 2017. "School Bus Routing with Stochastic Demand and Duration Constraints," Transportation Science, INFORMS, vol. 51(4), pages 1349-1364, November.
    2. Cook, Jason L. & Ramirez-Marquez, Jose Emmanuel, 2009. "Optimal design of cluster-based ad-hoc networks using probabilistic solution discovery," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 218-228.
    3. Wu, Shengna & Yang, Jun & Peng, Rui & Zhai, Qingqing, 2021. "Optimal design of facility allocation and maintenance strategy for a cellular network," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    4. Ran Wei, 2016. "Coverage Location Models," International Regional Science Review, , vol. 39(1), pages 48-76, January.
    5. Richard Francis & Timothy Lowe, 2014. "Comparative error bound theory for three location models: continuous demand versus discrete demand," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 144-169, April.
    6. Miyagawa, Masashi, 2010. "Distributions of rectilinear deviation distance to visit a facility," European Journal of Operational Research, Elsevier, vol. 205(1), pages 106-112, August.
    7. Catalano, Mario & Migliore, Marco, 2014. "A Stackelberg-game approach to support the design of logistic terminals," Journal of Transport Geography, Elsevier, vol. 41(C), pages 63-73.
    8. An, Kun & Xie, Siyang & Ouyang, Yanfeng, 2018. "Reliable sensor location for object positioning and surveillance via trilateration," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 956-970.
    9. Sergei Pashko & Anton Molyboha & Michael Zabarankin & Sergei Gorovyy, 2008. "Optimal sensor placement for underwater threat detection," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(7), pages 684-699, October.
    10. Erdemir, Elif Tokar & Batta, Rajan & Rogerson, Peter A. & Blatt, Alan & Flanigan, Marie, 2010. "Joint ground and air emergency medical services coverage models: A greedy heuristic solution approach," European Journal of Operational Research, Elsevier, vol. 207(2), pages 736-749, December.
    11. Sadeghi, Mohammad & Yaghoubi, Saeed, 2024. "Optimization models for cloud seeding network design and operations," European Journal of Operational Research, Elsevier, vol. 312(3), pages 1146-1167.
    12. Batta, Rajan & Berman, Oded & Wang, Qian, 2007. "Balancing staffing and switching costs in a service center with flexible servers," European Journal of Operational Research, Elsevier, vol. 177(2), pages 924-938, March.
    13. Murray, Alan T. & Feng, Xin, 2016. "Public street lighting service standard assessment and achievement," Socio-Economic Planning Sciences, Elsevier, vol. 53(C), pages 14-22.
    14. Vahid Hajipour & Parviz Fattahi & Hasan Bagheri & Samaneh Babaei Morad, 2022. "Dynamic maximal covering location problem for fire stations under uncertainty: soft-computing approaches," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(1), pages 90-112, February.
    15. Eusebio Angulo & Ricardo García-Ródenas & José Luis Espinosa-Aranda, 2016. "A Lagrangian relaxation approach for expansion of a highway network," Annals of Operations Research, Springer, vol. 246(1), pages 101-126, November.
    16. Cook, Jason L. & Ramirez-Marquez, Jose Emmanuel, 2007. "Two-terminal reliability analyses for a mobile ad hoc wireless network," Reliability Engineering and System Safety, Elsevier, vol. 92(6), pages 821-829.
    17. Ran Wei & Alan Murray & Rajan Batta, 2014. "A bounding-based solution approach for the continuous arc covering problem," Journal of Geographical Systems, Springer, vol. 16(2), pages 161-182, April.
    18. Anton Molyboha & Michael Zabarankin, 2011. "Optimization of steerable sensor network for threat detection," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(6), pages 564-577, September.
    19. Ramon Auad & Rajan Batta, 2017. "Location-coverage models for preventing attacks on interurban transportation networks," Annals of Operations Research, Springer, vol. 258(2), pages 679-717, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:topjnl:v:24:y:2016:i:3:d:10.1007_s11750-016-0410-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.