IDEAS home Printed from https://ideas.repec.org/a/spr/topjnl/v23y2015i3p743-772.html
   My bibliography  Save this article

Markov control models with unknown random state–action-dependent discount factors

Author

Listed:
  • J. Minjárez-Sosa

Abstract

The paper deals with a class of discounted discrete-time Markov control models with non-constant discount factors of the form $$\tilde{\alpha } (x_{n},a_{n},\xi _{n+1})$$ α ~ ( x n , a n , ξ n + 1 ) , where $$x_{n},a_{n},$$ x n , a n , and $$\xi _{n+1}$$ ξ n + 1 are the state, the action, and a random disturbance at time $$n,$$ n , respectively, taking values in Borel spaces. Assuming that the one-stage cost is possibly unbounded and that the distributions of $$\xi _{n}$$ ξ n are unknown, we study the corresponding optimal control problem under two settings. Firstly we assume that the random disturbance process $$\left\{ \xi _{n}\right\} $$ ξ n is formed by observable independent and identically distributed random variables, and then we introduce an estimation and control procedure to construct strategies. Instead, in the second one, $$\left\{ \xi _{n}\right\} $$ ξ n is assumed to be non-observable whose distributions may change from stage to stage, and in this case the problem is studied as a minimax control problem in which the controller has an opponent selecting the distribution of the corresponding random disturbance at each stage. Copyright Sociedad de Estadística e Investigación Operativa 2015

Suggested Citation

  • J. Minjárez-Sosa, 2015. "Markov control models with unknown random state–action-dependent discount factors," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(3), pages 743-772, October.
  • Handle: RePEc:spr:topjnl:v:23:y:2015:i:3:p:743-772
    DOI: 10.1007/s11750-015-0360-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11750-015-0360-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11750-015-0360-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eugene A. Feinberg & Adam Shwartz, 1994. "Markov Decision Models with Weighted Discounted Criteria," Mathematics of Operations Research, INFORMS, vol. 19(1), pages 152-168, February.
    2. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    3. Evgueni I. Gordienko & J. Adolfo Minjárez-Sosa, 1998. "Adaptive control for discrete-time Markov processes with unbounded costs: Average criterion," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 48(1), pages 37-55, September.
    4. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(4), pages 627-627, November.
    5. Arie Hordijk & Alexander A. Yushkevich, 1999. "Blackwell optimality in the class of all policies in Markov decision chains with a Borel state space and unbounded rewards," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 50(3), pages 421-448, December.
    6. Nadine Hilgert & J. Adolfo Minjárez-Sosa, 2001. "Adaptive policies for time-varying stochastic systems under discounted criterion," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 54(3), pages 491-505, December.
    7. Garud N. Iyengar, 2005. "Robust Dynamic Programming," Mathematics of Operations Research, INFORMS, vol. 30(2), pages 257-280, May.
    8. Eugene A. Feinberg & Adam Shwartz, 1995. "Constrained Markov Decision Models with Weighted Discounted Rewards," Mathematics of Operations Research, INFORMS, vol. 20(2), pages 302-320, May.
    9. Nadine Hilgert & J. Minjárez-Sosa, 2006. "Adaptive control of stochastic systems with unknown disturbance distribution: discounted criteria," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 63(3), pages 443-460, July.
    10. Anna Jaśkiewicz & Andrzej Nowak, 2011. "Stochastic Games with Unbounded Payoffs: Applications to Robust Control in Economics," Dynamic Games and Applications, Springer, vol. 1(2), pages 253-279, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Camilla LandÊn, 2000. "Bond pricing in a hidden Markov model of the short rate," Finance and Stochastics, Springer, vol. 4(4), pages 371-389.
    2. Álvarez Echeverría Francisco & López Sarabia Pablo & Venegas Martínez Francisco, 2012. "Valuación financiera de proyectos de inversión en nuevas tecnologías con opciones reales," Contaduría y Administración, Accounting and Management, vol. 57(3), pages 115-145, julio-sep.
    3. Matsumura, Marco & Moreira, Ajax & Vicente, José, 2011. "Forecasting the yield curve with linear factor models," International Review of Financial Analysis, Elsevier, vol. 20(5), pages 237-243.
    4. Lin, Bing-Huei, 1999. "Fitting the term structure of interest rates for Taiwanese government bonds," Journal of Multinational Financial Management, Elsevier, vol. 9(3-4), pages 331-352, November.
    5. Gollier, Christian, 2002. "Time Horizon and the Discount Rate," Journal of Economic Theory, Elsevier, vol. 107(2), pages 463-473, December.
    6. Tucker, A. L. & Wei, J. Z., 1998. "Valuation of LIBOR-Contingent FX options," Journal of International Money and Finance, Elsevier, vol. 17(2), pages 249-277, April.
    7. Chuong Luong & Nikolai Dokuchaev, 2016. "Modeling Dependency Of Volatility On Sampling Frequency Via Delay Equations," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 11(02), pages 1-21, June.
    8. Yang, Nian & Chen, Nan & Wan, Xiangwei, 2019. "A new delta expansion for multivariate diffusions via the Itô-Taylor expansion," Journal of Econometrics, Elsevier, vol. 209(2), pages 256-288.
    9. Kimmel, Robert L., 2004. "Modeling the term structure of interest rates: A new approach," Journal of Financial Economics, Elsevier, vol. 72(1), pages 143-183, April.
    10. Ben S. Bernanke & Vincent R. Reinhart & Brian P. Sack, 2004. "Monetary Policy Alternatives at the Zero Bound: An Empirical Assessment," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 35(2), pages 1-100.
    11. Prakash Chakraborty & Kiseop Lee, 2022. "Bond Prices Under Information Asymmetry and a Short Rate with Instantaneous Feedback," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 613-634, June.
    12. Podolskij, Mark & Vetter, Mathias, 2009. "Bipower-type estimation in a noisy diffusion setting," Stochastic Processes and their Applications, Elsevier, vol. 119(9), pages 2803-2831, September.
    13. Issler, João Victor, 1995. "Estimating the term structure of volatility and fixed income derivative pricing," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 272, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    14. Foad Shokrollahi & Marcin Marcin Magdziarz, 2020. "Equity warrant pricing under subdiffusive fractional Brownian motion of the short rate," Papers 2007.12228, arXiv.org, revised Nov 2020.
    15. Allan Jonathan da Silva & Jack Baczynskiy & José Valentim M. Vicente, 2015. "A Discrete Monitoring Method for Pricing Asian Interest Rate Options," Working Papers Series 409, Central Bank of Brazil, Research Department.
    16. Huse, Cristian, 2011. "Term structure modelling with observable state variables," Journal of Banking & Finance, Elsevier, vol. 35(12), pages 3240-3252.
    17. Gonçalo Jacinto & Patrícia A. Filipe & Carlos A. Braumann, 2022. "Profit Optimization of Cattle Growth with Variable Prices," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 1917-1952, September.
    18. Levendorskii, Sergei, 2004. "Consistency conditions for affine term structure models," Stochastic Processes and their Applications, Elsevier, vol. 109(2), pages 225-261, February.
    19. Olivier Le Courtois, 2022. "On the Diversification of Fixed Income Assets," Risks, MDPI, vol. 10(2), pages 1-21, February.
    20. Nowman, K. Ben & Sorwar, Ghulam, 2005. "Derivative prices from interest rate models: results for Canada, Hong Kong, and United States," International Review of Financial Analysis, Elsevier, vol. 14(4), pages 428-438.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:topjnl:v:23:y:2015:i:3:p:743-772. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.