IDEAS home Printed from https://ideas.repec.org/a/spr/topjnl/v22y2014i1p31-37.html
   My bibliography  Save this article

Comments on: Farkas’ lemma: three decades of generalizations for mathematical optimization

Author

Listed:
  • B. Mordukhovich

Abstract

In these comments on the excellent survey by Dinh and Jeyakumar, we briefly discuss some recently developed topics and results on applications of extended Farkas’ lemma(s) and related qualification conditions to problems of variational analysis and optimization, which are not fully reflected in the survey. They mainly concern: Lipschitzian stability of feasible solution maps for parameterized semi-infinite and infinite programs with linear and convex inequality constraints indexed by arbitrary sets; optimality conditions for nonsmooth problems involving such constraints; evaluating various subdifferentials of optimal value functions in DC and bilevel infinite programs with applications to Lipschitz continuity of value functions and optimality conditions; calculating and estimating normal cones to feasible solution sets for nonlinear smooth as well as nonsmooth semi-infinite, infinite, and conic programs with deriving necessary optimality conditions for them; calculating coderivatives of normal cone mappings for convex polyhedra in finite and infinite dimensions with applications to robust stability of parameterized variational inequalities. We also give some historical comments on the original Farkas’ papers. Copyright Sociedad de Estadística e Investigación Operativa 2014

Suggested Citation

  • B. Mordukhovich, 2014. "Comments on: Farkas’ lemma: three decades of generalizations for mathematical optimization," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 31-37, April.
  • Handle: RePEc:spr:topjnl:v:22:y:2014:i:1:p:31-37
    DOI: 10.1007/s11750-014-0315-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11750-014-0315-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11750-014-0315-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. Cánovas & M. López & B. Mordukhovich & J. Parra, 2012. "Quantitative stability of linear infinite inequality systems under block perturbations with applications to convex systems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 310-327, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boris S. Mordukhovich & T. T. A. Nghia, 2014. "Nonsmooth Cone-Constrained Optimization with Applications to Semi-Infinite Programming," Mathematics of Operations Research, INFORMS, vol. 39(2), pages 301-324, May.
    2. B. S. Mordukhovich & T. T. A. Nghia, 2012. "DC Optimization Approach to Metric Regularity of Convex Multifunctions with Applications to Infinite Systems," Journal of Optimization Theory and Applications, Springer, vol. 155(3), pages 762-784, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:topjnl:v:22:y:2014:i:1:p:31-37. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.