IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v33y2024i2d10.1007_s11749-023-00902-w.html
   My bibliography  Save this article

Tensor eigenvectors for projection pursuit

Author

Listed:
  • Nicola Loperfido

    (Università degli Studi di Urbino Carlo Bo)

Abstract

Tensor eigenvectors naturally generalize matrix eigenvectors to multi-way arrays: eigenvectors of symmetric tensors of order k and dimension p are stationary points of polynomials of degree k in p variables on the unit sphere. Dominant eigenvectors of symmetric tensors maximize polynomials in several variables on the unit sphere, while base eigenvectors are roots of polynomials in several variables. In this paper, we focus on skewness-based projection pursuit and on third-order tensor eigenvectors, which provide the simplest, yet relevant connections between tensor eigenvectors and projection pursuit. Skewness-based projection pursuit finds interesting data projections using the dominant eigenvector of the sample third standardized cumulant to maximize skewness. Skewness-based projection pursuit also uses base eigenvectors of the sample third cumulant to remove skewness and facilitate the search for interesting data features other than skewness. Our contribution to the literature on tensor eigenvectors and on projection pursuit is twofold. Firstly, we show how skewness-based projection pursuit might be helpful in sequential cluster detection. Secondly, we show some asymptotic results regarding both dominant and base tensor eigenvectors of sample third cumulants. The practical relevance of the theoretical results is assessed with six well-known data sets.

Suggested Citation

  • Nicola Loperfido, 2024. "Tensor eigenvectors for projection pursuit," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 33(2), pages 453-472, June.
  • Handle: RePEc:spr:testjl:v:33:y:2024:i:2:d:10.1007_s11749-023-00902-w
    DOI: 10.1007/s11749-023-00902-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11749-023-00902-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11749-023-00902-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:33:y:2024:i:2:d:10.1007_s11749-023-00902-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.