IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v32y2023i4d10.1007_s11749-023-00875-w.html
   My bibliography  Save this article

Sparse and debiased lasso estimation and inference for high-dimensional composite quantile regression with distributed data

Author

Listed:
  • Zhaohan Hou

    (Nankai University)

  • Wei Ma

    (Nankai University)

  • Lei Wang

    (Nankai University)

Abstract

We consider the data are inherently distributed and focus on statistical learning in the presence of heavy-tailed and/or asymmetric errors. The composite quantile regression (CQR) estimator is a robust and efficient alternative to the ordinary least squares and single quantile regression estimators. Based on the aggregated and communication-efficient approaches, we propose two classes of sparse and debiased lasso CQR estimation and inference methods. Specifically, an aggregated $$\ell _1$$ ℓ 1 -penalized CQR estimator and a $$\ell _1$$ ℓ 1 -penalized communication-efficient CQR estimator are obtained firstly. To construct confidence intervals and make hypothesis testing, a unified debiasing framework based on smoothed decorrelated score equations is introduced to eliminate biases caused by lasso penalty. Finally, a hard-thresholding method is employed to ensure that the debiased lasso estimators are sparse. The convergence rates and asymptotic properties of the proposed estimators are established and their performance is evaluated through simulations and a real-world dataset.

Suggested Citation

  • Zhaohan Hou & Wei Ma & Lei Wang, 2023. "Sparse and debiased lasso estimation and inference for high-dimensional composite quantile regression with distributed data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(4), pages 1230-1250, December.
  • Handle: RePEc:spr:testjl:v:32:y:2023:i:4:d:10.1007_s11749-023-00875-w
    DOI: 10.1007/s11749-023-00875-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11749-023-00875-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11749-023-00875-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:32:y:2023:i:4:d:10.1007_s11749-023-00875-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.