IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v32y2023i3d10.1007_s11749-023-00858-x.html
   My bibliography  Save this article

Level sets of depth measures in abstract spaces

Author

Listed:
  • A. Cholaquidis

    (Universidad de la República)

  • R. Fraiman

    (Universidad de la República)

  • L. Moreno

    (Universidad de la República)

Abstract

The lens depth of a point has been recently extended to general metric spaces, which is not the case for most depths. It is defined as the probability of being included in the intersection of two random balls centred at two random points X and Y, with the same radius d(X, Y). We prove that, on a separable and complete metric space, the level sets of the empirical lens depth based on an iid sample, converge in the Painlevé–Kuratowski sense, to its population counterpart. We also prove that, restricted to compact sets, the empirical level sets and their boundaries are consistent estimators, in Hausdorff distance, of their population counterparts, and analyse two real-life examples.

Suggested Citation

  • A. Cholaquidis & R. Fraiman & L. Moreno, 2023. "Level sets of depth measures in abstract spaces," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(3), pages 942-957, September.
  • Handle: RePEc:spr:testjl:v:32:y:2023:i:3:d:10.1007_s11749-023-00858-x
    DOI: 10.1007/s11749-023-00858-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11749-023-00858-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11749-023-00858-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:32:y:2023:i:3:d:10.1007_s11749-023-00858-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.